Angular Momentum Loss and Chromospheric Activity in Late-Type Dwarfs

Author(s):  
David R. Soderblom
1983 ◽  
Vol 102 ◽  
pp. 439-444
Author(s):  
David R. Soderblom

A chromospheric color-magnitude diagram has been constructed from the Vaughan-Preston survey of Ca II emission among solar neighborhood stars. The relative flux in the H and K lines declines with mass on the lower main-sequence as a consequence of the decline of the ZAMS rotational velocity with mass. The features of this C-M diagram are discussed, and some evidence for a gap in the distribution of Ca II emission with age is examined.


1980 ◽  
Vol 5 ◽  
pp. 601-613
Author(s):  
S. R. Sreenivasan

AbstractThe effects of mass-loss and angular momentum loss on the evolution of massive stars are discussed bringing out the main results as well as the limitations of recent studies. It is pointed out that an acceptable theory of stellar winds in early as well as late type stars is needed as well as a satisfactory assessment of a number of instabilities in these contexts for an adequate understanding of the evolutionary consequences for a wide variety of population I and polulation II stars, which are affected by mass-loss.


2021 ◽  
Vol 922 (2) ◽  
pp. 148
Author(s):  
A. Granada ◽  
C. E. Jones ◽  
T. A. A. Sigut

Abstract Using hydrodynamic principles we investigate the nature of the disk viscosity following the parameterization by Shakura & Sunyaev adopted for the viscous decretion model in classical Be stars. We consider a radial viscosity distribution including a constant value, a radially variable α assuming a power-law density distribution, and isothermal disks, for a late-B central star. We also extend our analysis by determining a self-consistent temperature disk distribution to model the late-type Be star 1 Delphini, which is thought to have a nonvariable, stable disk as evidenced by Hα emission profiles that have remained relatively unchanged for decades. Using standard angular momentum loss rates given by Granada et al., we find values of α of approximately 0.3. Adopting lower values of angular momentum loss rates, i.e., smaller mass loss rates, leads to smaller values of α. The values for α vary smoothly over the Hα emitting region and exhibit the biggest variations nearest the central star within about five stellar radii for the late-type, stable Be stars.


2008 ◽  
Vol 4 (S259) ◽  
pp. 423-424
Author(s):  
Asif ud-Doula ◽  
Stanley P. Owocki ◽  
Richard H.D. Townsend

AbstractWe examine the angular momentum loss and associated rotational spin-down for magnetic hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our analysis here is based on our previous 2-D numerical MHD simulation study that examines the interplay among wind, field, and rotation as a function of two dimensionless parameters, W(=Vrot/Vorb) and ‘wind magnetic confinement’, η∗ defined below. We compare and contrast the 2-D, time variable angular momentum loss of this dipole model of a hot-star wind with the classical 1-D steady-state analysis by Weber and Davis (WD), who used an idealized monopole field to model the angular momentum loss in the solar wind. Despite the differences, we find that the total angular momentum loss averaged over both solid angle and time follows closely the general WD scaling ~ ṀΩR2A. The key distinction is that for a dipole field Alfvèn radius RA is significantly smaller than for the monopole field WD used in their analyses. This leads to a slower stellar spin-down for the dipole field with typical spin-down times of order 1 Myr for several known magnetic massive stars.


Sign in / Sign up

Export Citation Format

Share Document