Analysis of Local and Regional Droughts in Southern Portugal using the Theory of Runs and the Standardised Precipitation Index

Author(s):  
A. A. Paulo ◽  
L. S. Pereira ◽  
P. G. Matias
2014 ◽  
Vol 22 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Arkadiusz Bartczak ◽  
Ryszard Glazik ◽  
Sebastian Tyszkowski

Abstract The article presents the results of research into the transformation of series of hydro-meteorological data for determining dry periods with the Standardised Precipitation Index (SPI) and the Standardised Discharge Index (SDI). Time series from eight precipitation stations and five series of river discharge data in Eastern Kujawy (central Poland) were analysed for 1951–2010. The frequency distribution of the series for their convergence with the normal distribution was tested with the Shapiro–Wilk test and homogeneity with the Bartlett's test. The transformation of the series was done with the Box–Cox technique, which made it possible to homogenise the series in terms of variance. In Poland, the technique has never been used to determine the SPI. After the transformation the distributions of virtually all series complied with the normal distribution and were homogeneous. Moreover, a statistically significant correlation between the δ transformation parameter and the skewness of the series of monthly precipitation was observed. It was similar for the series of mean monthly discharges in the winter half-year and the hydrological year. The analysis indicates an alternate occurrence of dry and wet periods both in case of precipitation and run-offs. Drought periods coincided with low flow periods. Thus, the fluctuations tend to affect the development of agriculture more than long-term ones.


Author(s):  
John Odiyo ◽  
Fhumulani I. Mathivha ◽  
Tinyiko R. Nkuna ◽  
Rachel Makungo

This study determined the risks associated with hydrological hazards and vulnerabilities to communities in Vhembe District Municipality, Limpopo province. Risk and vulnerability contribute to poverty, loss of lives and property, environmental and infrastructural destruction, food insecurity and unavailability of water resources. Streamflow and rainfall data were analysed using Log-Pearson Type III distribution and Standardised Precipitation Index (SPI), respectively, to identify return periods and probabilities of occurrence of floods and droughts. Mann–Kendall test was applied to identify trends of floods and droughts. Risk ratings were used to determine risks and vulnerabilities associated with floods and droughts. Standardised Precipitation Index analysis showed that a mild dryness condition dominated dry years in all stations with a range of 22.4% to 59.2% of the years falling within this category. Twenty-five per cent and 75% of rainfall stations depicted downward and upward trends, respectively. Equal number of streamflow stations depicted downward and upward trends. Results generally showed that flood events with return periods of 50, 100 and 200 years are mostly associated with significant and catastrophic consequence levels. This demonstrated high risk and vulnerability of the communities to these hazards. The findings of this study will aid in future planning and development of mitigation strategies associated with hydrological hazards.


2013 ◽  
Vol 115 (3-4) ◽  
pp. 503-516 ◽  
Author(s):  
Fadhilah Yusof ◽  
Foo Hui-Mean ◽  
Jamaludin Suhaila ◽  
Zulkifli Yusop ◽  
Kong Ching-Yee

2013 ◽  
Vol 17 (12) ◽  
pp. 4769-4787 ◽  
Author(s):  
J. P. Bloomfield ◽  
B. P. Marchant

Abstract. A new index for standardising groundwater level time series and characterising groundwater droughts, the Standardised Groundwater level Index (SGI), is described. The SGI builds on the Standardised Precipitation Index (SPI) to account for differences in the form and characteristics of groundwater level and precipitation time series. The SGI is estimated using a non-parametric normal scores transform of groundwater level data for each calendar month. These monthly estimates are then merged to form a continuous index. The SGI has been calculated for 14 relatively long, up to 103 yr, groundwater level hydrographs from a variety of aquifers and compared with SPI for the same sites. The relationship between SGI and SPI is site specific and the SPI accumulation period which leads to the strongest correlation between SGI and SPI, qmax, varies between sites. However, there is a consistent positive linear correlation between a measure of the range of significant autocorrelation in the SGI series, mmax, and qmax across all sites. Given this correlation between SGI mmax and SPI qmax, and given that periods of low values of SGI can be shown to coincide with previously independently documented droughts, SGI is taken to be a robust and meaningful index of groundwater drought. The maximum length of groundwater droughts defined by SGI is an increasing function of mmax, meaning that relatively long groundwater droughts are generally more prevalent at sites where SGI has a relatively long autocorrelation range. Based on correlations between mmax, average unsaturated zone thickness and aquifer hydraulic diffusivity, the source of autocorrelation in SGI is inferred to be dependent on dominant aquifer flow and storage characteristics. For fractured aquifers, such as the Cretaceous Chalk, autocorrelation in SGI is inferred to be primarily related to autocorrelation in the recharge time series, while in granular aquifers, such as the Permo–Triassic sandstones, autocorrelation in SGI is inferred to be primarily a function of intrinsic saturated flow and storage properties of aquifer. These results highlight the need to take into account the hydrogeological context of groundwater monitoring sites when designing and interpreting data from groundwater drought monitoring networks.


2012 ◽  
Vol 9 (6) ◽  
pp. 401-417 ◽  
Author(s):  
Christos A. Karavitis ◽  
Christina Chortaria ◽  
Stavros Alexandris ◽  
Constantina G. Vasilakou ◽  
Demetrios E. Tsesmelis

2020 ◽  
pp. 517-531

This study aims to indicate the relationship between meteorological drought and hydrological drought on the example of a lakeland catchment in north-western Poland. The Standardised Precipitation Index (SPI) and Standardised Runoff Index (SRI) were used to identify drought during 1-, 3-, 6-, 9- and 12-month cumulation periods. In the study period 1971–2015, 13 to 62 meteorological droughts and 6 to 21 hydrological droughts were identified. The highest number of droughts occurred for the shortest cumulation period (1 month) and the lowest number for the longest cumulation period (12 months). The relationship between SPI and SRI coefficients over the annual course was strongest for the 9-month cumulation period. The highest correlation coefficient was obtained for February.


2018 ◽  
Vol 135 (3-4) ◽  
pp. 1435-1447 ◽  
Author(s):  
Dimitris Tigkas ◽  
Harris Vangelis ◽  
George Tsakiris

Sign in / Sign up

Export Citation Format

Share Document