scholarly journals Relationships between meteorological and hydrological drought in a young-glacial zone (north-western Poland)based on Standardised Precipitation Index (SPI) and Standardized Runoff Index (SRI)

2020 ◽  
pp. 517-531

This study aims to indicate the relationship between meteorological drought and hydrological drought on the example of a lakeland catchment in north-western Poland. The Standardised Precipitation Index (SPI) and Standardised Runoff Index (SRI) were used to identify drought during 1-, 3-, 6-, 9- and 12-month cumulation periods. In the study period 1971–2015, 13 to 62 meteorological droughts and 6 to 21 hydrological droughts were identified. The highest number of droughts occurred for the shortest cumulation period (1 month) and the lowest number for the longest cumulation period (12 months). The relationship between SPI and SRI coefficients over the annual course was strongest for the 9-month cumulation period. The highest correlation coefficient was obtained for February.

Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2020 ◽  
Vol 80 (1) ◽  
Author(s):  
Kee An Hong ◽  
Jer Lang Hong ◽  
Izihan Ibrahim

In this study, drought occurrence in the Melaka basin has been assessed using the meteorological and hydrological drought indices. A continuous rainfall and streamflow data of 40 years were used for drought analysis. Results show that in terms of meteorological drought index, the severe drought occurred in 1986-1988. The streamflow drought index indicates that the extreme drought occurred in 1982-1984. Further analysis based on seasonal precipitation and streamflow data shows that there is no drought for 79% of the time for the period 1960-2000 where there are hydrological records. For most of the dry and wet seasons, it is more likely that the frequency of occurrence of hydrological droughts only is higher than the frequency of occurrence of meteorological and hydrological droughts simultaneously or only meteorological droughts.


2021 ◽  
Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Zhenxin Bao ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianzhu Li ◽  
Yuangang Guo ◽  
Yixuan Wang ◽  
Shanlong Lu ◽  
Xu Chen

Drought propagation pattern forms a basis for establishing drought monitoring and early warning. Due to its regional disparity, it is necessary and significant to investigate the pattern of drought propagation in a specific region. With the objective of improving understanding of drought propagation pattern in the Luanhe River basin, we first simulated soil moisture and streamflow in naturalized situation on daily time scale by using the Soil and Water Assessment Tool (SWAT) model. The threshold level method was utilized in identifying drought events and drought characteristics. Compared with meteorological drought, the number of drought events was less and duration was longer for agricultural and hydrological droughts. The results showed that there were 3 types of drought propagation pattern: from meteorological drought to agricultural/hydrological drought (M-A/H), agricultural/hydrological drought without meteorological drought (NM-A/H), and meteorological drought only (M). To explain the drought propagation pattern, possible driven factors were determined, and the relations between agricultural/hydrological drought and the driven factors were built using multiple regression models with the coefficients of determination of 0.4 and 0.656, respectively. These results could provide valuable information for drought early warning and forecast.


2018 ◽  
Vol 66 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Miriam Fendeková ◽  
Tobias Gauster ◽  
Lívia Labudová ◽  
Dana Vrablíková ◽  
Zuzana Danáčová ◽  
...  

Abstract Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.


2021 ◽  
Author(s):  
Yang Xu ◽  
Xuan Zhang

<p>Understanding the impacts of human regulation on development and recovery characteristics of hydrological drought is crucial to detect the relationship between hydrological drought and the regional water cycle system. In this study the standardized streamflow index (SSI) which based on the observation and SWAT simulated runoff data were used to represent the hydrological drought under human disturbed and naturalized scenarios, respectively. Furthermore, the hydrological drought events under each scenario was divided into the development and recovery stages by the run theory. Comparing two scenarios under the stage Ⅰ (1980-1989) and stage Ⅱ (2007-2016), the human disturbed scenario presents a more severe hydrological drought than the naturalized scenario at stage Ⅱ. Our study further found that the reservoir operation was the irreplaceable factor that affected hydrological drought development and recovery in the study area. The reservoir has the strong ability to alleviate the long-duration hydrological droughts, however, the recovery ability of drought has been weakened. To be noticed that though the water intake from the river by the reservoir has been reduced, the drought alleviates ability of the reservoir still become weaker than prototype after working for 30 years. Therefore, as time goes on the effects of reservoir will become progressively more important. The results of our study could be a hint for policymakers and stakeholders to enhance the drought early warning and forecasting system to optimal reservoirs’ management at semi-arid areas.</p>


2019 ◽  
Vol 20 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Feng Ma ◽  
Lifeng Luo ◽  
Aizhong Ye ◽  
Qingyun Duan

Abstract Meteorological and hydrological droughts can bring different socioeconomic impacts. In this study, we investigated meteorological and hydrological drought characteristics and propagation using the standardized precipitation index (SPI) and standardized streamflow index (SSI), over the upstream and midstream of the Heihe River basin (UHRB and MHRB, respectively). The correlation analysis and cross-wavelet transform were adopted to explore the relationship between meteorological and hydrological droughts in the basin. Three modeling experiments were performed to quantitatively understand how climate change and human activities influence hydrological drought and propagation. Results showed that meteorological drought characteristics presented little difference between UHRB and MHRB, while hydrological drought events are more frequent in the MHRB. In the UHRB, there were positive relationships between meteorological and hydrological droughts, whereas drought events became less frequent but longer when meteorological drought propagated into hydrological drought. Human activities have obviously changed the positive correlation to negative in the MHRB, especially during warm and irrigation seasons. The propagation time varied with seasonal climate characteristics and human activities, showing shorter values due to higher evapotranspiration, reservoir filling, and irrigation. Quantitative evaluation showed that climate change was inclined to increase streamflow and propagation time, contributing from −57% to 63%. However, more hydrological droughts and shorter propagation time were detected in the MHRB because human activities play a dominant role in water consumption with contribution rate greater than (−)89%. This study provides a basis for understanding the mechanism of hydrological drought and for the development of improved hydrological drought warning and forecasting system in the HRB.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1000
Author(s):  
Muhammad Nouman Sattar ◽  
Muhammad Jehanzaib ◽  
Ji Eun Kim ◽  
Hyun-Han Kwon ◽  
Tae-Woong Kim

Drought is one of the most destructive natural hazards and results in negative effects on the environment, agriculture, economics, and society. A meteorological drought originates from atmospheric components, while a hydrological drought is influenced by properties of the hydrological cycle and generally induced by a continuous meteorological drought. Several studies have attempted to explain the cross dependencies between meteorological and hydrological droughts. However, these previous studies did not consider the propagation of drought classes. Therefore, in this study, to consider the drought propagation concept and to probabilistically assess the meteorological and hydrological drought classes, characterized by the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI), respectively, we employed the Markov Bayesian Classifier (MBC) model that combines the procedure of iteration of feature extraction, classification, and application for assessment of drought classes for both SPI and SRI. The classification results were compared using the observed SPI and SRI, as well as with previous findings, which demonstrated that the MBC was able to reasonably determine drought classes. The accuracy of the MBC model in predicting all the classes of meteorological drought varies from 36 to 76% and in predicting all the classes of hydrological drought varies from 33 to 70%. The advantage of the MBC-based classification is that it considers drought propagation, which is very useful for planning, monitoring, and mitigation of hydrological drought in areas having problems related to hydrological data availability.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2218 ◽  
Author(s):  
Dawit Teweldebirhan Tsige ◽  
Venkatesh Uddameri ◽  
Farhang. Forghanparast ◽  
Elma Annette. Hernandez ◽  
Stephen. Ekwaro-Osire

Meteorological drought indicators are commonly used for agricultural drought contingency planning in Ethiopia. Agricultural droughts arise due to soil moisture deficits. While these deficits may be caused by meteorological droughts, the timing and duration of agricultural droughts need not coincide with the onset of meteorological droughts due to soil moisture buffering. Similarly, agricultural droughts can persist, even after the cessation of meteorological droughts, due to delayed hydrologic processes. Understanding the relationship between meteorological and agricultural droughts is therefore crucial. An evaluation framework was developed to compare meteorological- and agriculture-related drought indicators using a suite of exploratory and confirmatory tools. Receiver operator characteristics (ROC) was used to understand the covariation of meteorological and agricultural droughts. Comparisons were carried out between SPI-2, SPEI-2, and Palmer Z-index to assess intraseasonal droughts, and between SPI-6, SPEI-6, and PDSI for full-season evaluations. SPI was seen to correlate well with selected agriculture-related drought indicators, but did not explain all the variability noted in them. The correlation between meteorological and agricultural droughts exhibited spatial variability which varied across indicators. SPI is better suited to predict non-agricultural drought states than agricultural drought states. Differences between agricultural and meteorological droughts must be accounted for in order to devise better drought-preparedness planning.


Author(s):  
Md. Anarul H. Mondol ◽  
Subash C. Das ◽  
Md. Nurul Islam

Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI) for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable than other districts.


Sign in / Sign up

Export Citation Format

Share Document