winter half
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Duanyang Liu ◽  
Wenlian Yan ◽  
Junlong Qian ◽  
Mei Liu ◽  
Zida Wang ◽  
...  

The Jianghuai area is an “important” region not only for its local pollutant accumulation but the belt for pollutant transportation between North China and the Yangtze River Delta during the winter half of the year (often from October to next February). In this study, a movable boundary layer conceptual model for the Jianghuai area in the winter half of the year is established based on the analyses of characteristics of atmospheric circulations and boundary layer dynamic conditions. This conceptual model can well explain the causes of air quality change and frequent fog-haze episodes. Variations of the intensity and range of the cold and warm fronts in the Jianghuai area in the winter half of the year lead to form a movable boundary in this area. When the southerly wind is strong, or affected by strong cold air mass, the air quality in the Jianghuai area may be excellent with a low air pollution index; Two atmospheric circulations provide favorable conditions for the fog-haze formation and maintenance in Jianghuai area: 1) When the shallow weak cold air mass is below the deep moist warm air mass, a stable temperature inversion occurs. The pollutants are transported to the Jianghuai area by the weak cold air mass, and local emissions also accumulate. As a result, a severe air pollution episode appears. 2) When the northerly cold air mass is as intense as the southerly moist warm air mass, the pollutants transported from North China as well as local emissions will continuously accumulate in the study area, which may lead to more severe air pollution. This conceptual model can help us analyze atmospheric diffusion capacity, and benefit the forecast and early warning of airflow stagnation area and fog-haze episode.


2021 ◽  
Vol 21 (20) ◽  
pp. 15783-15808
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Alexandra Chudnovsky ◽  
Ronny Engelmann ◽  
Christoph Ritter ◽  
...  

Abstract. During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5∘ N. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30 km. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005–0.01 at 500 nm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7–8 to 17–18 km height, with clear and unambiguous wildfire smoke signatures up to 12 km and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532 nm ranged from 0.05–0.12 in October–November 2019 and 0.03–0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15 %. We assume that the volcanic aerosol was above the smoke layer (above 13 km height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7–13 km height, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than at 532 nm, with mean values of 55 and 85 sr, respectively. The 355–532 nm Ångström exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30 km height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020.


2021 ◽  
Author(s):  
Patrick Johannes Stoll

Abstract. Polar lows are intense mesoscale cyclones developing in marine polar air masses. This study presents a new global climatology of polar lows based on the ERA-5 reanalysis for the years 1979–2020. Criteria for the detection of polar lows are derived based on a comparison of six polar-low archives with cyclones derived by a mesoscale tracking algorithm. The characteristics associated with polar lows are considered by the criteria: (i) intense cyclone: large relative vorticity, (ii) mesoscale: small vortex diameter, and (iii) development in the marine polar air masses: combination of low dry-static stability and low potential temperature at the tropopause. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half-year. The length and intensity of the season are regionally dependent. The highest density appears in the Nordic Seas. For all ocean sub-basins, forward-shear polar lows are the most common, whereas weak shear and those propagating towards warmer environments are second and third most frequent, depending on the area. Reverse-shear polar lows and those propagating towards colder environments are rather seldom, especially in the Southern Ocean. Generally, PLs share many characteristics across ocean basins and wind-shear categories. The most remarkable difference is that forward-shear polar lows are often occurring in stronger vertical wind shear, whereas reverse-shear polar lows feature lower static stability. Hence, the contribution to a fast baroclinic growth rate is slightly different for the shear categories.


2021 ◽  
Vol 25 (6) ◽  
pp. 3577-3594
Author(s):  
Regula Muelchi ◽  
Ole Rössler ◽  
Jan Schwanbeck ◽  
Rolf Weingartner ◽  
Olivia Martius

Abstract. Future changes in river runoff will impact many sectors such as agriculture, energy production, or ecosystems. Here, we study changes in the seasonality, frequency, and magnitude of moderate low and high flows and their time of emergence. The time of emergence indicates the timing of significant changes in the flow magnitudes. Daily runoff is simulated for 93 Swiss catchments for the period 1981–2099 under Representative Concentration Pathway 8.5 with 20 climate model chains from the most recent transient Swiss Climate Change Scenarios. In the present climate, annual low flows typically occur in the summer half-year in lower-lying catchments (<1500 m a.s.l.) and in the winter half-year in Alpine catchments (>1500 m a.s.l.). By the end of the 21st century, annual low flows are projected to occur in late summer and early autumn in most catchments. This indicates that decreasing precipitation and increasing evapotranspiration in summer and autumn exceed the water contributions from other processes such as snowmelt and glacier melt. In lower-lying catchments, the frequency of annual low flows increases, but their magnitude decreases and becomes more severe. In Alpine catchments, annual low flows occur less often and their magnitude increases. The magnitude of seasonal low flows is projected to decrease in the summer half-year in most catchments and to increase in the winter half-year in Alpine catchments. Early time of emergence is found for annual low flows in Alpine catchments in the 21st century due to early changes in low flows in the winter half-year. In lower-lying catchments, significant changes in low flows emerge later in the century. Annual high flows occur today in lower-lying catchments in the winter half-year and in Alpine catchments in the summer half-year. Climate change will change this seasonality mainly in Alpine catchments with a shift towards earlier seasonality in summer due to the reduced contribution of snowmelt and glacier melt in summer. Annual high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments. The magnitude of seasonal high flows in most catchments is projected to increase in the winter half-year and to decrease in the summer half-year. However, the climate model agreement on the sign of change in moderate high flows is weak.


2021 ◽  
Author(s):  
Tamás Weidinger ◽  
András Zénó Gyöngyösi ◽  
Gandhi Arun ◽  
Ágoston Tordai ◽  
Tamás Krámer ◽  
...  

&lt;p&gt;Characteristic phenomena in the Pannonian basin during the winter half year are the mist (500-1000 hours/year), the fog (150-300 hours/year) and the cold air pool with high air pollution concentrations. Formation, development and dissipation of fog events are complex processes that are impacted by short- and longwave radiation, condensation and evaporation, turbulent exchange, furthermore fog chemistry. The research presented here aims at exploring the interaction of these processes using field observations. To this end, complex field campaigns were conducted in Budapest (WMO code: 12843) and in the Si&amp;#243; Valley, 6 km away from Si&amp;#243;fok (12935) during 1 to 3-month periods in the last three winter half years.&lt;/p&gt;&lt;p&gt;Besides air chemistry and standard meteorological variables, the leaf wetness, surface and soil temperature, soil moisture, soil heat flux (Huskeflux), radiation budget components (CNR1) and turbulent fluxes based on eddy covariance (CSAT3, EC150) and gradient methods were measured above the grassland. Time resolutions of measurements for slow sensors were 10 sec or rather 1 minute and for eddy covariance system 10 Hz. The mist and fog periods were detected using a cloud camera (in Si&amp;#243; Valley) and by synoptic observations in Budapest and Si&amp;#243;fok.&lt;/p&gt;&lt;p&gt;Additional measurements in Budapest were i) the wind speed (&lt;em&gt;U&lt;/em&gt;), air temperature (&lt;em&gt;T&lt;/em&gt;) and relative humidity (&lt;em&gt;RH&lt;/em&gt;) profiles together with Gill sonic anemometer at the top of a 30 m high tower, ii) LUFT CHM 15k ceilometer. SODAR and aviation meteorological measurements were also available from the&lt;em&gt; &lt;/em&gt;Budapest Ferenc Liszt International Airport&lt;em&gt; (&lt;/em&gt;LHBP&lt;em&gt;) &lt;/em&gt;at 8 km distance.&lt;em&gt; &lt;/em&gt;Other&lt;em&gt; &lt;/em&gt;field experiments were done in the wet leeward Si&amp;#243; Valley in 2018-19 and 2019-20. Vaisala WXT530 sensor, LUFT CHM 15k ceilometer, tethered balloon measurements with GRAW radiosondes and METEK SODAR measurements were also provided as additional information behind the energy budget measurements.&lt;/p&gt;&lt;p&gt;Our results confirmed that according to the expectations, we have recorded more foggy situations in the Si&amp;#243; Valley than in Budapest (12843) and Si&amp;#243;fok (12935). Radiation and advection type fog events were formed in most cases. The measured &lt;em&gt;RH&lt;/em&gt; was above 95 and gradually increased during the onset period of fog. RH was around 100%, fluctuations could be measured less accurately. &amp;#160;Dissipation of the fog is usually characterized by wind intensification and rise in the incoming solar radiation. The data of two field campaigns will be analyzed i) a cold pool situation in Si&amp;#243; Valley in January 2020 and ii) the foggy season 2020-21 in Budapest. The developed complex (micrometeorological, furthermore air and liquid chemistry) database gives opportunity to validate numerical model results (WRF, CHIMERE and detailed box model) and to improve parameterizations of the numerical models.&lt;/p&gt;


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 498
Author(s):  
Adam Choiński ◽  
Mariusz Ptak ◽  
Alexander Volchak ◽  
Ivan Kirvel ◽  
Gintaras Valiuškevičius ◽  
...  

The paper presents long-term changes in water temperature in two rivers, Oder and Neman, with catchments showing different climatic conditions (with dominance of marine climate in the case of the Oder and continental climate in the case of the Neman River). A statistically significant increase in mean annual water temperature was recorded for four observation stations, ranging from 0.17 to 0.39 °C dec−1. At the seasonal scale, for the winter half-year, water temperature increase varied from 0.17 to 0.26 °C dec−1, and for the summer half-year from 0.17 to 0.50 °C dec−1. In three cases (Odra-Brzeg, Odra-Słubice, Niemen-Grodno), the recorded changes referred to the scale of changes in air temperature. For the fourth station on Neman (Smalininkai), an increase in water temperature in the river was considerably slower than air temperature increase. It should be associated with the substantial role of local conditions (non-climatic) affecting the thermal regime in that profile. Short-term forecast of changes in water temperature showed its further successive increase, a situation unfavorable for the functioning of these ecosystems.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jialu Wang ◽  
Weijie Li ◽  
Yong Wang ◽  
Jiaojiao Zhang ◽  
Shizhen Xiao

Environmental prediction is one of the crucial means for social sustainable development. Based on the continuous sampling of atmospheric precipitation in Guanling County, Guizhou Province, China, from March 2016 to February 2017, and combining the reanalyzed data of the National Centre for Environmental Prediction/National Centre for Atmospheric Research with the Hybrid Single-Particle Lagrangian Integrated Trajectory model, this paper analyzed the variations of δ2H and δ18O in precipitation at the synoptic scale in the Guanling region. The results showed that the variations of δ2H, δ18O, and d-excess values in precipitation exhibited remarkable seasonal variability. The stable isotopic values in precipitation in the winter half-year were higher than those in the summer half-year. The meteoric water line of the winter half-year was close to the annual meteoric water line. The results showed that there was more than one fundamental source of moisture. It was affected by the winter monsoon period, which is longer than the summer monsoon period, so the local evaporation of water vapor participating in the water circulation had a greater impact. With the increase of precipitation, the intercept and slope of the meteoric water line gradually decreased, which indicated that the secondary evaporation was weak under the effect of stable isotope subcloud cluster. The correlations of precipitation δ18O with temperature T and precipitation P vary with time scales. As the time scale decreased, the correlation between δ18O and the temperature and precipitation improved. When P  ≤ 5 mm and 10°C < T ≤ 30°C, the most sensitive changes in stable isotopes were observed. In the study area, the backward trajectory model showed that the moisture in the winter half of the year was mainly from the transportation of the westerlies wind, replenishment, and local reevaporation of near-source ocean water, while the water in the summer half of the year mainly came from the transportation of water from the ocean at low latitudes.


2021 ◽  
Author(s):  
Sonja Gisinger ◽  
Inna Polichtchouk ◽  
Robert Reichert ◽  
Andreas Dörnbrack ◽  
Bernd Kaifler ◽  
...  

&lt;p&gt;In November 2017, the DLR Institute of Atmospheric Physics started running the ground-based Compact Rayleigh Autonomous Lidar (CORAL) at the southern tip of South America in Rio Grande that is located at the east coast of Argentina in the lee of the Andes. We used this independent (i.e., not assimilated in the ECMWF IFS) and high-resolution lidar data of the year 2018 and some individual months in 2019 and 2020 to investigate middle atmosphere temperature deviations in IFS analyses and short-term forecasts at higher mid-latitudes in the southern hemisphere (54 S).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We found a generally good agreement between IFS and CORAL temperature data below 45 km altitude and the calculated monthly mean temperature deviations are smaller than +/-2 K.&amp;#160; The temperature deviations are more variable in time and the sign of the monthly mean deviations varies throughout the year above 45 km altitude. There, the largest positive differences (+2 K), i.e. IFS temperatures were too warm, are found for May 2018. The largest negative differences (-10 K), i.e. IFS temperatures were too cold, are found for August 2018.&amp;#160; The standard deviation of the temperature differences is significantly larger (up to 15 K) and increases with altitude in the winter half year (April to September 2018) compared to the summer half year. The better agreement of IFS temperature with ground-based lidar measurements in the summer months previously reported in literature for the northern hemisphere also manifests for the southern hemisphere and more recent cycles of the IFS. The largest temperature differences above 45 km altitude in the winter half year are due to gravity waves (GWs) and it was found that amplitude and phase deviations are equally important at the location of Rio Grande. In general, the IFS underestimates GW potential energy density in the middle atmosphere, especially within the sponge layer. Monthly mean GW potential energy density at 45-60 km altitude gets up to four times larger when the sponge is removed but is still less than 50 % of the amount of GW potential energy density found in the CORAL data.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Christoph Ritter ◽  
Alexandra Chudnovsky ◽  
...  

Abstract. During the one-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition the German icebreaker Polarstern drifted through the Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85° N and 88.5° N. A multiwavelength polarization Raman lidar was operated aboard the research vessel and continuously monitored aerosol and cloud layers up to 30 km height. The highlight of the lidar measurements was the detection of a persistent, 10 km deep wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height. The smoke layer was present throughout the winter half year until the polar vortex, the strongest of the last 40 years, collapsed in late April 2020. The smoke originated from major fire events, especially from extraordinarily intense and long-lasting Siberian fires in July and August 2019. In this article, we summarize the main findings of our seven-month smoke observations and characterize the aerosol properties and decay of the stratospheric perturbation in terms of geometrical, optical, and microphysical properties. The UTLS aerosol optical thickness (AOT) at 532 nm ranged from 0.05–0.12 in October–November 2019 and was of the order of 0.03–0.06 during the central winter months (December–February). As an unambiguous sign of the dominance of smoke, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than the respective 532 nm lidar ratio. Mean values were 55 sr (355 nm) and 85 sr (532 nm). We further present a review of previous height resolved Arctic aerosol observations (remote sensing) in our study. For the first time, a coherent and representative view on the aerosol layering features in the Central Arctic from the surface up to 27 km height during the winter half year is presented. Finally, a potential impact of the wildfire smoke aerosol on the record-breaking ozone depletion over the Arctic in the spring of 2020 is discussed based on smoke, ozone, and polar stratospheric cloud observations.


2021 ◽  
Author(s):  
Milun Petrovic ◽  
◽  
Snezana Bogosavljevic-Boškovic ◽  
Simeon Rakonjac ◽  
Radojica Đokovic ◽  
...  

Lamb production dominates in organic sheep production, while milk production is much less present and very rare. There are usually two basic systems of breeding in lamb production: fattening of lambs on pasture and combined fattening of lambs. In organic goat breeding, the most common is the organic production of milk and dairy products, primarily quality goat cheeses. The cultivation system is usually a combination of grazing (summer half of the year) and stable cultivation (winter half of the year). Such agriculture provides amortization of the negative effects of social development on the ecosphere and the human population as a whole.


Sign in / Sign up

Export Citation Format

Share Document