Humid Atmosphere Induced Processes of Hydrogen Formation and Embrittlement of Sn-Al Eutectic

Author(s):  
F. Muktepavela ◽  
M. Vasylyev ◽  
V. G. Kostychenko
Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


Author(s):  
Chengcheng Liu ◽  
Koichi Suematsu ◽  
Akihito Uchiyama ◽  
Ken Watanabe ◽  
Yanbao Guo ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Camille Merienne ◽  
Chloe Marchand ◽  
Samira Filali ◽  
Damien Salmon ◽  
Christine Pivot ◽  
...  

AbstractBackgroundStability of low amoxicillin oral dosage form (5 mg) used in reintroduction drug test was not fully documented. Furthermore, the impact of (1) salt moiety of amoxicillin and (2) amoxicillin – excipient interactions upon the antibiotic formulation stability during the storage was not characterized so that the estimation of the pharmaceutical expiration date from shelf-life was uncertain. Thus, the main goal of this study was to estimate the shelf-life of two formulations of amoxicillin, using a semi-predictive methodology.MethodsAmoxicillin sodium (AS) and amoxicillin trihydrate (ATH), corresponding to 5-mg amoxicillin, were compounded with microcrystalline cellulose (MCC) in oral hard capsules which were, then, submitted to four environmental conditions (25 °C / 60% or 80% relative humidity (RH); 40 °C / 75% RH; 60 °C / 5% RH) in climatic chambers for 45 and 84 days. Therefore, the characterization of amoxicillin-MCC mixture was assessed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) The profiles of amoxicillin content (determined by stability indicating chromatographic method) as a function of storage time, temperature and RH were fitted to pre-defined kinetic models performed by accelerated predictive stability (APS).ResultsATR-FTIR analysis of AS, ATH, MCC and bulk specimens stored in heated and humid atmosphere confirmed water sorption to cellulose described by a broad and unresolved 3600 to 3000 cm−1 band associated with (1) general intramolecular and intermolecular hydrogen bonding between water and hydroxyl groups of the cellulose, and with (2) free hydroxyl in cellulose. Moreover, a dramatic decrease of absorption at 1776 and 1687 cm−1 respectively characteristic of the β-lactam ring (νC=O) and amide group (νC=O), was revealed as a consequence of AS and ATH degradation caused by moisturization of bulk. Amoxicillin degradation was established by chromatographic analysis showing faster AS degradation than ATH throughout time exposure. The combined effects of temperature – RH were successfully modeled by APS, where AS and ATH showed accelerated (auto-catalysis degradation mechanism) and linear degradation, respectively. The faster AS degradation was assumed to be linked to lower hydrogen donor to hydrogen acceptor count ratio and polar surface than ATH, increasing the probability of AS hydrolysis by water adsorption to AS-MCC solid dispersion (e.g., by reduction of protective intramolecular hydrogen bonds between AS molecules). Furthermore, the compounding which involved a drastic homogenization of solids may have affected the crystalline degree of MCC with an increase of amorphous phase more sensitive to water adsorption.ConclusionsThe improvement of amoxicillin compounding for oral dose forms might be rationalized by taking into account the molecular descriptors of salt moiety and excipients, improved by the choice of an appropriate process of production, characterized from infrared vibrational spectroscopy and chromatographic analysis and finally predicted from accelerated stability assays.


1970 ◽  
Vol 48 (11) ◽  
pp. 1782-1785 ◽  
Author(s):  
P. R. McLean ◽  
D. J. McKenney

Rates of formation of ethylene, hydrogen, and methane have been measured at 630 °C for the thermal decomposition of ethane at pressures between 100 and 620 Torr, with various pressures (approximately 1 to 100 Torr) of added hydrogen sulfide. The effect of the H2S was to increase the rate of methane formation and to decrease the rate of ethylene and hydrogen formation. Rates of formation of all three of these gases decreased with increasing hydrogen sulfide pressures. The quantitative data obtained and the partial product analysis indicate that a complex mechanism is operative. Possible qualitative explanations for the observations are discussed.


2010 ◽  
Vol 726 (1) ◽  
pp. 55 ◽  
Author(s):  
Matthew J. Turk ◽  
Paul Clark ◽  
S. C. O. Glover ◽  
T. H. Greif ◽  
Tom Abel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document