Observations of Interplanetary Scintillation: Solar Wind Velocity Measurements

Author(s):  
T. Kakinuma
2021 ◽  
Author(s):  
Konrad Steinvall ◽  
Yuri Khotyaintsev ◽  
Giulia Cozzani ◽  
Andris Vaivads ◽  
Christopher Owen ◽  
...  

<p>Solar wind current sheets have been extensively studied at 1 AU. The recent advent of Parker Solar Probe and Solar Orbiter (SolO) has enabled us to study these structures at a range of heliocentric distances.</p><p>We present SolO observations of current sheets in the solar wind at heliocentric distances between 0.55 and 0.85 AU, some of which show signatures of ongoing magnetic reconnection. We develop a method to find the deHoffman-Teller frame which minimizes the Y-component (the component tangential to the spacecraft orbit) of the electric field. Using the electric field measurements from RPW and magnetic field measurements from MAG, we use our method to determine the deHoffman-Teller frame of solar wind current sheets. The same method can also be used on the Alfvénic turbulence and structures found in the solar wind to obtain a measure of the solar wind velocity.</p><p>Our preliminary results show a good agreement between our modified deHoffmann-Teller analysis based on the single component E-field, and the conventional deHoffman-Teller analysis based on 3D plasma velocity measurements from PAS. This opens up the possibility to use the RPW and MAG data to obtain an estimate of the solar wind velocity when particle data is unavailable.</p>


2000 ◽  
Vol 18 (9) ◽  
pp. 1003-1008 ◽  
Author(s):  
P. J. Moran ◽  
S. Ananthakrishnan ◽  
V. Balasubramanian ◽  
A. R. Breen ◽  
A. Canals ◽  
...  

Abstract. Observations of interplanetary scintillation (IPS) allow accurate solar wind velocity measurements to be made at all heliographic latitudes and at a range of distances from the Sun. The data may be obtained with either single, double or multiple antennas, each requiring a different method of analysis. IPS data taken during the 1998 whole sun month (30th July-31st August 1998) by EISCAT, the ORT (Ooty Radio Telescope), India, and the Nagoya IPS system, Japan, allow the results of individual methods of analysis to be compared. Good agreement is found between the velocity measurements using each method, and when combined an improved understanding of the structure of the solar wind can be obtained.Key words: Interplanetary physics (solar wind plasma; sources of the solar wind) - Solar physics, astrophysics and astronomy (instruments and techniques)


1991 ◽  
Vol 96 (A8) ◽  
pp. 13849-13859 ◽  
Author(s):  
W. A. Coles ◽  
Ruth Esser ◽  
Unni-Pia Løvhaug ◽  
Jussi Markkanen

Author(s):  
A. R. Breen ◽  
R. A. Fallows ◽  
M. M. Bisi ◽  
P. Thomasson ◽  
C. A. Jordan ◽  
...  

2002 ◽  
Vol 20 (9) ◽  
pp. 1279-1289 ◽  
Author(s):  
R. A. Fallows ◽  
P. J. S. Williams ◽  
A. R. Breen

Abstract. A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS) usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma)


2005 ◽  
Vol 35 (12) ◽  
pp. 2189-2194 ◽  
Author(s):  
A.I. Efimov ◽  
M.K. Bird ◽  
V.K. Rudash ◽  
V.E. Andreev ◽  
I.V. Chashei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document