X-Ray Astronomy in the Future

1981 ◽  
pp. 537-564
Author(s):  
J. L. Culhane
Keyword(s):  
X Ray ◽  
1983 ◽  
Vol 6 ◽  
pp. 648-648
Author(s):  
J.B. Hutchings

IUE has been used to study 11 high luminosity X-ray binaries, of which 3 are in the Magellanic Clouds. In the supergiant systems, X-ray ionisation bubbles have been found in most cases, leading to a greater understanding of the winds and accretion processes. Further studies of precessing objects such as LMC X-4 with IUE and ST are clearly of considerable interest, relating to X-ray heating and blanketing. Detailed studies of the Cyg X-l ionisation bubble may resolve the long standing puzzle of its orbit inclination and masses. UV continua have furnished valuable information on extinction, temperatures and luminosities, and the presence of non-stellar (i.e. disk) luminosity. Here too, more detailed studies are clearly indicated for the future. A unique object of interest is the LMC transient 0538-66 whose UV spectrum has quasarlike lines and luminosity which varies oppositely to the visible. This may be a case of supercritical accretion generating an optically thick shell (“disk”) about the pulsar.


1984 ◽  
Author(s):  
J. E. McClintock ◽  
A. M. Levine
Keyword(s):  
X Ray ◽  

1981 ◽  
Vol 30 (1-4) ◽  
pp. 537-564 ◽  
Author(s):  
J. L. Culhane
Keyword(s):  
X Ray ◽  

2008 ◽  
pp. 145-164
Author(s):  
Douglas C. Rees
Keyword(s):  
X Ray ◽  

BMJ ◽  
2010 ◽  
pp. c3994
Author(s):  
Frances Richardson ◽  
Jennifer Taylor
Keyword(s):  
X Ray ◽  

Author(s):  
Ian Baker

This paper provides an overview of techniques used to characterize the microstructure of snow, firn and ice. These range from traditional optical microscopy techniques such as examining thin sections between crossed polarizers to various electron-optical and X-ray techniques. Techniques that could have an impact on microstructural characterization of snow, firn and ice in the future are briefly outlined. This article is part of the theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’.


2018 ◽  
Vol 170 ◽  
pp. 08003
Author(s):  
L. Berge ◽  
N. Estre ◽  
D. Tisseur ◽  
E. Payan ◽  
D. Eck ◽  
...  

The future PLINIUS-2 platform of CEA Cadarache will be dedicated to the study of corium interactions in severe nuclear accidents, and will host innovative large-scale experiments. The Nuclear Measurement Laboratory of CEA Cadarache is in charge of real-time high-energy X-ray imaging set-ups, for the study of the corium-water and corium-sodium interaction, and of the corium stratification process. Imaging such large and high-density objects requires a 15 MeV linear electron accelerator coupled to a tungsten target creating a high-energy Bremsstrahlung X-ray flux, with corresponding dose rate about 100 Gy/min at 1 m. The signal is detected by phosphor screens coupled to high-framerate scientific CMOS cameras. The imaging set-up is established using an experimentally-validated home-made simulation software (MODHERATO). The code computes quantitative radiographic signals from the description of the source, object geometry and composition, detector, and geometrical configuration (magnification factor, etc.). It accounts for several noise sources (photonic and electronic noises, swank and readout noise), and for image blur due to the source spot-size and to the detector unsharpness. In a view to PLINIUS-2, the simulation has been improved to account for the scattered flux, which is expected to be significant. The paper presents the scattered flux calculation using the MCNP transport code, and its integration into the MODHERATO simulation. Then the validation of the improved simulation is presented, through confrontation to real measurement images taken on a small-scale equivalent set-up on the PLINIUS platform. Excellent agreement is achieved. This improved simulation is therefore being used to design the PLINIUS-2 imaging set-ups (source, detectors, cameras, etc.).


Sign in / Sign up

Export Citation Format

Share Document