scholarly journals Microstructural characterization of snow, firn and ice

Author(s):  
Ian Baker

This paper provides an overview of techniques used to characterize the microstructure of snow, firn and ice. These range from traditional optical microscopy techniques such as examining thin sections between crossed polarizers to various electron-optical and X-ray techniques. Techniques that could have an impact on microstructural characterization of snow, firn and ice in the future are briefly outlined. This article is part of the theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’.

2015 ◽  
Vol 1766 ◽  
pp. 3-8
Author(s):  
D. C. Rojas-Olmos ◽  
N. López-Perrusquia ◽  
M. A. Doñu-Ruiz ◽  
J.A Juanico Loran ◽  
C. R. Torres San Miguel

ABSTRACTThis work studies the change microstructural and mechanical properties of biomedical component hot forging of titanium; was assessed quantitatively and qualitatively the microstructural features obtained in this titanium biocompatible Ti6Al4V. The forging process was obtained at temperature of 950 °C, after by technical optical microscopy are obtained the microstructural characterization showing the phases present after forging. Likewise, the technical X-ray diffraction (XRD) shows the presence of the phases. Also is evaluated the hardness and modulus of elasticity by technical nanoindentation. The characterization of this material has the objective to show that the results obtained with temperature study of 950 °C. Likewise by the forging process obtained a type phases and optimal properties required for these biomedical materials.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 96057-96064 ◽  
Author(s):  
Juliette Merle ◽  
Pascale Sénéchal ◽  
Fabrice Guerton ◽  
Peter Moonen ◽  
Pierre Trinsoutrot ◽  
...  

The objective of this work is to compare three techniques for characterizing the morphology of porous bio-based carbon foam, namely mercury intrusion porosimetry, scanning electron microscopy and X-ray microtomography.


2000 ◽  
Vol 662 ◽  
Author(s):  
Elizabeth E. Shen ◽  
Hsin-Lung Chen ◽  
Balaji Narasimhan

AbstractThis research examines the microstructure of polyanhydride blends for use in drug delivery devices. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) studies were performed on the homopolymers and blends of the polyanhydrides poly(1,6-carboxyphenoxy hexane) (CPH) and poly(sebacic anhydride) (SA). AFM of the CPH/SA blends 20:80, 50:50, and 80:20 showed distinct patterns indicating spinodal decomposition and phase separation on the micron-scale. Because it has been shown that incorporated drugs will thermodynamically partition into phase-separated domains depending on their hydrophobicity, polyanhydride blends will be able to encapsulate larger bioactive compounds including nucleotides, proteins, and vaccines. Preliminary SAXS studies of the CPH/SA blend systems provide information on the crystalline morphology of the polymer. A peak shift to a lower q from poly(SA) to the blends indicates that the poly(CPH) is incorporated into and causes swelling of the interlamellar amorphous regions of poly(SA).


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47373-47381 ◽  
Author(s):  
Maxime Bodennec ◽  
Qing Guo ◽  
Dérick Rousseau

Lecithin-based oleogels consist of a worm-like entangled fibrous 3D network. Small angle X-ray diffraction suggests that these microfibres are formed by the packing of reverse hexagonal (HII) tubules parallel to the axis of fibres.


Sign in / Sign up

Export Citation Format

Share Document