Evaluation of Investigation Strategies for an Old Municipal Dumping Site

Author(s):  
E. Würdinger ◽  
J. Tränkler ◽  
W. Rommel
Keyword(s):  
Author(s):  
Andrei Sokolov ◽  
Andrei Sokolov ◽  
Boris Chubarenko ◽  
Boris Chubarenko

Three dumping sites located at the south-eastern part of the Baltic Sea (Kaliningrad Oblast) at shallow depths are considered. The first one is located to the south of the Vistula Lagoon inlet in front of a permanently eroded open marine shore segment. The second one is located to the north of the Vistula Lagoon inlet, and is used now for disposing of dredged material extracted from the Kaliningrad Seaway Canal. The third dumping site is located near the northern shore of the Sambian Peninsula to the east of the Cape Gvardeijski and assigned for disposing the dredged material extracted from the fairway to the Pionerskij Port located nearby. The last site is planned to be used for disposing of dredged material from the future port that should be constructed there before the beginning of the FIFA World Cup 2018. All three dumping sites are located not far from the eroded segments of the shore. The question behind the study is: would it possible that disposed material will naturally transported from the damping site to the shore and accumulate there to protect it from erosion? A numerical hydrodynamic-transport 3D model (MIKE) was used to model sediment transport under different wind actions. The winds with the speed stronger than 15 m/s complete wash out disposed material from the dumping site and spreading it over the wide area with a negligible layer thickness. Winds of about 7-10 m/s transport material along the shore at a distance of few kilometers that may be useful for shore protection. The first location of the dumping site (to the south of the Vistula Lagoon inlet) looks very ineffective for potential protection the shore nearby. At the other hand, the second and especially the third locations are favorable for transport of disposed material to the shore, the most favorable conditions are at onshore or alongshore currents.


Author(s):  
Andrei Sokolov ◽  
Andrei Sokolov ◽  
Boris Chubarenko ◽  
Boris Chubarenko

Three dumping sites located at the south-eastern part of the Baltic Sea (Kaliningrad Oblast) at shallow depths are considered. The first one is located to the south of the Vistula Lagoon inlet in front of a permanently eroded open marine shore segment. The second one is located to the north of the Vistula Lagoon inlet, and is used now for disposing of dredged material extracted from the Kaliningrad Seaway Canal. The third dumping site is located near the northern shore of the Sambian Peninsula to the east of the Cape Gvardeijski and assigned for disposing the dredged material extracted from the fairway to the Pionerskij Port located nearby. The last site is planned to be used for disposing of dredged material from the future port that should be constructed there before the beginning of the FIFA World Cup 2018. All three dumping sites are located not far from the eroded segments of the shore. The question behind the study is: would it possible that disposed material will naturally transported from the damping site to the shore and accumulate there to protect it from erosion? A numerical hydrodynamic-transport 3D model (MIKE) was used to model sediment transport under different wind actions. The winds with the speed stronger than 15 m/s complete wash out disposed material from the dumping site and spreading it over the wide area with a negligible layer thickness. Winds of about 7-10 m/s transport material along the shore at a distance of few kilometers that may be useful for shore protection. The first location of the dumping site (to the south of the Vistula Lagoon inlet) looks very ineffective for potential protection the shore nearby. At the other hand, the second and especially the third locations are favorable for transport of disposed material to the shore, the most favorable conditions are at onshore or alongshore currents.


Author(s):  
Monashree Sarma Bora ◽  
Upasona Devi ◽  
Nandita Bharadwaj ◽  
Pratibha Sharma ◽  
Santa Kalita ◽  
...  

2004 ◽  
Vol 90 (1-3) ◽  
pp. 269-288 ◽  
Author(s):  
P. K. Dinesh Kumar ◽  
P. Vethamony ◽  
M. T. Babu ◽  
K. Srinivas ◽  
Tony J. Thottam

2006 ◽  
Vol 56 (9) ◽  
pp. 2147-2152 ◽  
Author(s):  
Om Prakash ◽  
Rup Lal

A phenanthrene-degrading bacterium, strain TKPT, was isolated from a fly ash dumping site of the thermal power plant in Panki, Kanpur, India, by an enrichment culture method using phenanthrene as the sole source of carbon and energy. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus Sphingobium, as it showed highest sequence similarity to Sphingobium herbicidovorans DSM 11019T (97.3 %) and Sphingomonas cloacae JCM 10874T (96.5 %), compared with only 91–93 % similarity to members of other genera such as Sphingomonas sensu stricto, Novosphingobium, Sphingopyxis and Sphingosinicella. In DNA–DNA hybridization experiments with strains that were closely related phylogenetically and in terms of 16S rRNA gene sequences, i.e. Sphingobium herbicidovorans DSM 11019T and Sphingomonas cloacae JCM 10874T, strain TKPT showed less than 70 % relatedness. Strain TKPT contained sphingoglycolipids SGL-1 and SGL-2 and 18 : 1ω7c as the predominant fatty acid, with 16 : 0 as a minor component and 14 : 0 2-OH as the major 2-hydroxy fatty acid. Thus, phylogenetic analysis, DNA–DNA hybridization, fatty acid and polar lipid profiles and differences in physiological and morphological features from the most closely related members of the Sphingobium group showed that strain TKPT represents a distinct species of Sphingobium. The name Sphingobium fuliginis sp. nov. is proposed, with the type strain TKPT (=MTCC 7295T=CCM 7327T). Sphingomonas cloacae JCM 10874T formed a coherent cluster with members of Sphingobium, did not reduce nitrate to nitrite and had a fatty acid profile similar to those of Sphingobium species; hence Sphingomonas cloacae should be transferred to the genus Sphingobium as Sphingobium cloacae comb. nov., with the type strain JCM 10874T (=DSM 14926T).


2021 ◽  
Vol 4 (4) ◽  
pp. 547-560
Author(s):  
Aniefiok Akpaneno ◽  
S. Abdulwahab

A geophysical investigation involving Vertical Electrical Sounding (VES) using the Schlumberger array was carried out at the Isa Kaita College of Education specifically at the Male Hostel. The aim of the investigation is to explore the groundwater contamination of the area with the objectives: to determine the depth to basement of the study area, to determine the aquifer thickness, to determine the depth to aquifer, to determine the conductivity of the aquifer and to determine the thickness of topsoil and its variation in resistivity. A total of four (4) vertical electrical soundings were carried out using Schlumberger configuration. Terrameter signal averaging system (SAS) model 300 was the instrument used. The survey area is dominated by mainly four layers, namely: Topsoil, Weathered basement, fractured basement. The value of VES 03 and VES 04 have high electrical conductivities which likely shows they are contaminated, The topsoil resistivity along the profile ranges from approximately 1 to 154, The depth to basement (basement topography) Varies from 4.94 m to 7.59 m, The thickness of aquifer range from  1 m to 6.8 m.  Therefore VES 02 has high Potential for groundwater because it has retaining capacity and good aquifer thickness and is therefore recommended for borehole establishment. It is recommended that the management of Isa Kaita College of Education should provide a concrete dumping site to avoid leaching of waste in ground thereby contaminating the groundwater.


1988 ◽  
Vol 6 (1) ◽  
pp. 77-89 ◽  
Author(s):  
P.I. Mitchell ◽  
A. Vidal-Quadras ◽  
J.L. Font ◽  
M. Oliva

Sign in / Sign up

Export Citation Format

Share Document