Effects of explant size, pretreatment, and light intensity on shoot regeneration from in vitro-grown apple leaves

Author(s):  
Richard E. Durham ◽  
Schuyler S. Korban
HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 460F-461
Author(s):  
Xiaoling Cao ◽  
F.A. Hammerschlag

As part of a program to develop transgenic highbush blueberry (Vaccinium corymbosum L.) cultivars, studies were conducted to determine optimum conditions for high efficiency shoot regeneration from leaf explants of in vitro-propagated shoot cultures. The effect of either thidiazuron at 1 or 5 μM, or zeatin riboside at 20 μM, and two lit levels (18 ± 5 or 55 ± 5 μmol·m-2·s-1) on shoot organogenesis were investigated. With the exception of `Bluecrop', which did not regenerate shoots, maximum shoot regeneration of 13, 12.7, 12.6 and 4.6 shoots per explant for cultivars Duke, Georgiagem, Sierra, and Jersey, respectively, occured on regeneration medium with zeatin riboside and under a light intensity of 55 μmol·m-2·s-1. Whereas `Duke' regenerated equally well on regeneration medium with either zeatin riboside or 5 μM thidiazuron, regeneration frequencies for `Georgiagem' and `Sierra' were significantly higher on zeatin riboside. A light intensity of 55 μmol·m-2·s-1 significantly increased regeneration of cultivars Duke, Jersey, and Sierra on zeatin riboside, but inhibited regeneration of Duke on 5 μM thidazuron.


Author(s):  
J. Dobránszky ◽  
E. Jámbor-Benczúr ◽  
M. L. Reményi ◽  
K. Magyar-Tábori ◽  
I. Hudák ◽  
...  

The effects of different aromatic cytokinins applied in different concentrations and combinations were investigated on the histology of in vitro apple leaves and their post-effects on subsequent shoot regeneration from these leaves were studied. Great differences in the anatomical structure of leaves could be detected originating from media containing different types and concentrations of aromatic cytokinins. The number of regenerated shoots per explant and the organogenetic index were used for the evaluation of the post-effect of aromatic cytokinins on shoot regeneration. The histological structure of leaves used for regeneration and their regeneration response showed a good correlation. When the pre-treatment caused a juvenile-like or less-differentiated structure, the number of regenerated shoots per explant increased and often vitrification also decreased and consequently the organogenetic index also increased. A strong interaction between cytokinin-content (type and concentration) of the pre-treatment medium and that of the regeneration medium could also be detected.


2002 ◽  
Vol 50 (2) ◽  
pp. 117-126 ◽  
Author(s):  
J. Dobránszki ◽  
K. Magyar-Tábori ◽  
E. Jámbor-Benczúr ◽  

The effects of a new type of aromatic cytokinin, meta-topolin, on the morphology and histology of apple leaves and its post-effects on the subsequent shoot regeneration from in vitro leaves were studied in cv. Royal Gala. The media applied for pre-treatment differed from each other in their cytokinin composition: medium No. 1 contained no cytokinin, No. 2 was supplemented with 0.5 mg l-1 benzyladenine, while Nos. 3-6 contained meta-topolin, the new type of cytokinin, in four concentrations (0.5-1.0-1.5-2.0 mg l-1). After a 3-week pre-treatment on these media shoot regeneration was induced on two test regeneration media containing thidiazuron (0.2 mg l-1) or benzyladenine (5.0 mg l-1). Irrespective of the pre-treatments, high regeneration (97-100%) was observed on all the regeneration media. however, the conditioning of apple shoots for three weeks on medium supplemented with meta-topolin in a concentration range between 0.5 and 1.5 mg l-1 caused a significant decrease in the rate of vitrified shoots (down to 13.4%) and increased the number of regenerated shoots per leaf segment significantly (up to 15.1). There was a positive correlation between the histological status and regeneration capacity of in vitro leaves. According to these results, meta-topolin, as a new source of cytokinin, could increase the morphogenic potential of apple leaves.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


2009 ◽  
Vol 36 (No. 4) ◽  
pp. 140-146 ◽  
Author(s):  
J.K. Kanwar ◽  
S. Kumar

The influence of growth regulators, explants and their interactions on in vitro shoot bud formation from callus was studied in <I>Dianthus caryophyllus</I> L. The leaf and internode explants were cultured on Murashige and Skoog (MS) medium containing different concentrations of growth regulators. The highest callus induction was observed with 2 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D) and 1 mg/l benzyl adenine (BA). Out of twenty seven shoot regeneration media tested, only 2 mg/l thidiazuron (TDZ) and zeatin alone or in combination with naphthalene acetic acid (NAA) and/or indole acetic acid (IAA) could differentiate calli. The highest average number of shoots was observed with 2 mg/l TDZ and 1 mg/l IAA. Significant differences were observed in calli producing shoots and number of shoots per callus in the explants of leaf and internode. The shoots were elongated and multiplied on MS medium supplemented with 1 mg/l BA and solidified with 1% agar. The shoots were rooted and hardened with 76% survival success in pots after six weeks of transfer to the pots.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Anthony J. Conner ◽  
Helen Searle ◽  
Jeanne M. E. Jacobs

Abstract Background A frequent problem associated with the tissue culture of Compositae species such as chicory (Cichorium intybus L.) and lettuce (Lactuca sativa L.) is the premature bolting to in vitro flowering of regenerated plants. Plants exhibiting such phase changes have poor survival and poor seed set upon transfer from tissue culture to greenhouse conditions. This can result in the loss of valuable plant lines following applications of cell and tissue culture for genetic manipulation. Results This study demonstrates that chicory and lettuce plants exhibiting stable in vitro flowering can be rejuvenated by a further cycle of adventitious shoot regeneration from cauline leaves. The resulting rejuvenated plants exhibit substantially improved performance following transfer to greenhouse conditions, with increased frequency of plant survival, a doubling of the frequency of plants that flowered, and substantially increased seed production. Conclusion As soon as in vitro flowering is observed in unique highly-valued chicory and lettuce lines, a further cycle of adventitious shoot regeneration from cauline leaves should be implemented to induce rejuvenation. This re-establishes a juvenile phase accompanied by in vitro rosette formation, resulting in substantially improved survival, flowering and seed set in a greenhouse, thereby ensuring the recovery of future generations from lines genetically manipulated in cell and tissue culture.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Satoko Kakino ◽  
Shinya Kushibiki ◽  
Azusa Yamada ◽  
Zenzo Miwa ◽  
Yuzo Takagi ◽  
...  

The applicability of arterial pulse oximetry to dental pulp was demonstrated using in vitro and in vivo measurements. First, porcine blood of known oxygen saturation (SO2) was circulated through extracted human upper incisors, while transmitted-light plethysmography was performed using three different visible wavelengths. From the light intensity waveforms measured in vitro, a parameter that is statistically correlated to SO2 was calculated using the pulsatile/nonpulsatile component ratios of two wavelengths for different SO2. Then, values were measured in vivo for living incisors, and the corresponding SO2 values were calculated using the results of in vitro measurements. The estimated SO2 values of the upper central incisors measured in vivo were from 71.0 to 92.7%. This study showed the potential to measure the oxygen saturation changes to identify the sign of pulpal inflammation.


Sign in / Sign up

Export Citation Format

Share Document