Shaping intraspecifíc variation: development, ecology and the evolution of morphology and life history variation in tiger salamanders

Author(s):  
James P. Collins ◽  
Kim E. Zerba ◽  
Michael J. Sredl
2021 ◽  
Author(s):  
Hugo Cayuela ◽  
Clément Rougeux ◽  
Martin Laporte ◽  
Claire Mérot ◽  
Eric Normandeau ◽  
...  

AbstractThe molecular mechanisms underlying intraspecific variation in life history strategies are still poorly understood, despite the importance of this question for understanding of organism’s responses to environmental variability. Theoretical work proposed that epigenetic mechanisms such as DNA methylation might regulate intraspecific variation in life history strategies, however this assumption has rarely been verified empirically in wild populations. We examined associations between genome-wide methylation changes and environmentally-driven life history variation in two lineages of a marine fish that diverged approximatively 2.5 Mya, the capelin (Mallotus villosus), from North America and Europe. In both lineages, capelin harbour two contrasted life history strategies: some are strictly semelparous, experience fast actuarial senescence, but benefit from high hatching success by spawning on demersal sites where water temperature is low and relatively stable. In contrast, others are facultative iteroparous, have slower actuarial senescence, and suffer from lower hatching success by breeding in the intertidal zone where temperature is warmer, thermohaline parameters are less stable, and egg desiccation risk is high. Performing whole genome and epigenome sequencing, we showed that these contrasted life history strategies are more likely governed by epigenetic changes than by differences in DNA sequence. While genetic differentiation between the capelin harbouring different life history strategies was negligible, we detected parallel genome-wide methylation changes across lineages. We identified 1,067 differentially methylated regions (DMRs) comprising 15,818 CpGs, with 22% of them located within 5-kb around genes comprising promotor regions. We found that all DMRs were hypermethylated in demersal-spawning individuals. This striking result suggests that lower water temperature at demersal sites leads to an overall hypermethylation of the genome determined during the epigenetic reprogramming occurring over embryonic development. Our study emphasizes that parallel epigenetics changes in lineages with divergent genetic background could have a functional role in the regulation of intraspecific life history variation.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


Sign in / Sign up

Export Citation Format

Share Document