Evaluation of Viral Safety of Biotechnology Products Derived from Cell Lines of Human or Animal Origin

Author(s):  
Takao Hayakawa
Author(s):  
Velmurugan Balaraman ◽  
Barbara S Drolet ◽  
Natasha N Gaudreault ◽  
William C Wilson ◽  
Jeana Owens ◽  
...  

Abstract SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


2006 ◽  
Vol 22 (5) ◽  
pp. 355-362
Author(s):  
S. L. Rybalko ◽  
Ye. V. Pokas ◽  
V. A. Dieyev ◽  
T. M. Liaskovski ◽  
T. M. Furzikova ◽  
...  

2009 ◽  
Vol 102 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Daniel M. Strauss ◽  
Jeffrey Gorrell ◽  
Magdalena Plancarte ◽  
Gregory S. Blank ◽  
Qi Chen ◽  
...  

2016 ◽  
Vol 21 (8) ◽  
pp. 858-865 ◽  
Author(s):  
Charlotte Grootaert ◽  
Gerard Bryan Gonzales ◽  
Hanne Vissenaekens ◽  
Tom Van de Wiele ◽  
Katleen Raes ◽  
...  

Here, we describe an easy-to-use flow cytometric method using diphenylboric acid 2-amino ethyl ester (DPBA) stain for the detection of flavonoids in cells from human/animal origin. Flavonoid bioavailability and bioactivity depend on structure, conjugation and the cell type to which they are presented. We have studied cellular uptake of five flavonoids with different structures and conjugation forms. First, parameters including fixation method, technical and batch variability, and concentration were optimized. Second, uptake of two aglycones—quercetin and hesperetin—and their corresponding glycosides—rutin and hesperidin—in Caco-2 cells was compared. Third, the aglycone quercetin, glycoside rutin, and glucuronide baicalin were added to the Caco-2, HepG2, and CHO-K1 cell lines at 1, 10, and 20 µM concentrations and cellular uptake was measured after 1, 4, and 7 h. We conclude that quercetin was taken up by cells in a dose-dependent way, and that HepG2 cells had the highest uptake factors, followed by CHO-K1 and Caco-2 cells. Confocal microscopy showed cell type–dependent localization of quercetin in the cell membrane and cytoplasm. No uptake of flavonoid glycosides was detected. This flow cytometric method can be used for future research unravelling mechanisms behind flavonoid bioactivity in health and disease at the cellular level.


2020 ◽  
Author(s):  
Velmurugan Balaraman ◽  
Barbara S. Drolet ◽  
Natasha N Gaudreault ◽  
William C. Wilson ◽  
Jeana Owens ◽  
...  

AbstractSARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2infected blood meal. Species tested included Culicoides sonorensis biting midges, as well as Culex tarsalis and Culex quinquefasciatus mosquitoes, all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2 spiked blood and at various time points post infection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Ae. aegypti (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines support SARS-CoV-2 replication. We conclude, that biting insect do not pose a risk for transmission of SARS-CoV-2 to humans or animals following a SARS-CoV-2 infected blood meal.


Author(s):  
B. G. Uzman ◽  
M. M. Kasac ◽  
H. Saito ◽  
A. Krishan

In conjunction with the cultivation and transplantation of cells from human tumors by the Programs of Microbiology and Immunogenetics, virus surveillance by electron microscopy has been routinely employed. Of particular interest in this regard have been 3 cell lines cultured from lymph nodes or spleen of 2 patients with Hodgkin's disease and 1 patient with Letterer-Siwe's disease. Each of these cell lines when transplanted in Syrian hamster neonates conditioned with anti-lymphocyte serum grew as serially transplantable tumors; from such transplants of the 3 cell lines cell cultures were retrieved.Herpes type virus particles (Figs. 1, 2, 3) were found in the primary cultures of all three lines, in frozen thawed aliquots of same, and in cultures retrieved from their tumors growing by serial transplantation in hamsters. No virus was detected in sections of 25 of the serially transplanted tumors. However, in 10 such tumors there were repeated instances of tubular arrays in the cisternae of the endoplasmic reticulum (Fig. 4). On serologic examination the herpes virus was shown to be the Epstein-Barr virus.


Sign in / Sign up

Export Citation Format

Share Document