intrathoracic inoculation
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255314
Author(s):  
Worawat Dangsagul ◽  
Kriengsak Ruchusatsawat ◽  
Apiwat Tawatsin ◽  
Don Changsom ◽  
Pirom Noisumdaeng ◽  
...  

Zika virus (ZIKV) was isolated from the archival urine, serum, and autopsy specimens by intrathoracic inoculation of Toxorhynchitis splendens and followed by three blind sub-passaging in C6/36 mosquito cells. The virus isolates were identified using an immunofluorescence assay and real-time reverse transcription-polymerase chain reaction (real-time RT-PCR). This study analyzed 11 ZIKV isolates. One isolate (0.6%) was obtained from 171 urine samples, eight (8.7%) from 92 serum samples and two from tissues of an abortive fetus. After propagation in C6/36 cells, ZIKV was titrated by plaque and focus forming unit (FFU) assays in Vero cell monolayers, and viral genomes were determined via real-time and digital RT-PCR. Plaque and FFU assay quantitations were comparable, with the amount of infectious viruses averaging 106−107 PFU or FFU/ml. Real-time RT-PCR semi-quantified the viral genome numbers, with Ct values varying from 12 to 14. Digital RT-PCR, which precisely determines the numbers of the viral genomes, consistently averaged 10–100 times higher than the number of infectious units. There was good correlation between the results of these titration methods. Therefore, the selection of a method should be based on the objectives of each research studies.


Author(s):  
Velmurugan Balaraman ◽  
Barbara S Drolet ◽  
Natasha N Gaudreault ◽  
William C Wilson ◽  
Jeana Owens ◽  
...  

Abstract SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0238210
Author(s):  
Arman Issimov ◽  
David B. Taylor ◽  
Malik Shalmenov ◽  
Birzhan Nurgaliyev ◽  
Izimgali Zhubantayev ◽  
...  

Lumpy skin disease (LSD) is an emerging disease of cattle in Kazakhstan and the means of transmission remains uncertain. In the current study, retention of Lumpy Skin Disease Virus (LSDV) by three Stomoxys species following intrathoracic inoculation was demonstrated under laboratory conditions. A virulent LSDV strain was injected into the thorax of flies to bypass the midgut barrier. The fate of the pathogen in the hemolymph of the flies was examined using PCR and virus isolation tests. LSDV was isolated from all three Stomoxys species up to 24h post inoculation while virus DNA was detectable up to 7d post inoculation.


BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (18) ◽  
Author(s):  
Irma Sanchez-Vargas ◽  
Adeline Williams ◽  
Alexander Franz ◽  
Ken Olson

2020 ◽  
Author(s):  
Velmurugan Balaraman ◽  
Barbara S. Drolet ◽  
Natasha N Gaudreault ◽  
William C. Wilson ◽  
Jeana Owens ◽  
...  

AbstractSARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2infected blood meal. Species tested included Culicoides sonorensis biting midges, as well as Culex tarsalis and Culex quinquefasciatus mosquitoes, all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2 spiked blood and at various time points post infection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Ae. aegypti (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines support SARS-CoV-2 replication. We conclude, that biting insect do not pose a risk for transmission of SARS-CoV-2 to humans or animals following a SARS-CoV-2 infected blood meal.


2020 ◽  
Author(s):  
Arman Issimov ◽  
Lespek Kutumbetov ◽  
Assylbek Zhanabayev ◽  
Nurlybay Kazhgaliyev ◽  
Birzhan Nurgaliyev ◽  
...  

AbstractLumpy skin disease (LSD) is an emerging disease in cattle in Kazakhstan and the means of transmission remains uncertain. In the current study, acquisition of Lumpy Skin Disease Virus (LSDV) by Stomoxys species following intrathoracic inoculation was demonstrated under laboratory conditions. Flies were injected with a virulent LSDV strain into the thorax region to bypass the midgut barrier. The fate of pathogen in the hemolymph of the flies was further examined using PCR and Virus isolation tests. LSDV was isolated from all three Stomoxys species immediately and up to 24h post intrathoracic inoculation while virus DNA was detectable up to 7d post intrathoracic inoculation.


2012 ◽  
Vol 93 (11) ◽  
pp. 2419-2424 ◽  
Author(s):  
Erica M. Kelly ◽  
Daniel C. Moon ◽  
Doria F. Bowers

Apoptosis is observed during a spectrum of conditions including exogenous virus infection and endogenous cellular turnover. Adult female Aedes albopictus mosquitoes challenged with increasing titres of Sindbis virus (SINV) via intrathoracic inoculation demonstrated that the injection dosage did not result in significantly different levels of virus growth or mosquito survival at day 10 post-infection. Tissues probed for apoptosis using an in situ TUNEL assay revealed SINV-associated apoptotic cells scattered throughout the proximal and distal regions of the salivary gland (SG) lateral lobes but which were not detected in the median lobe or the midgut and hindgut. Apoptosis was also identified in SG duct cells in both infected and uninfected mosquitoes, suggesting routine tissue homeostasis. SINV-associated apoptosis sequestered to the SG lateral lobes indicates a differential epithelial cell response to an arbovirus and provides insight into mosquito defence mechanisms against pathogens and SG infection barriers, hurdles to transmission of arboviruses of public health concern.


2009 ◽  
Vol 83 (11) ◽  
pp. 5640-5647 ◽  
Author(s):  
Ronald L. Knight ◽  
Kimberly L. W. Schultz ◽  
Rebekah J. Kent ◽  
Meera Venkatesan ◽  
Diane E. Griffin

ABSTRACT Each Sindbis virus (SINV) surface glycoprotein has two sites for N-linked glycosylation (E1 positions 139 and 245 [E1-139 and E1-245] and E2 positions 196 and 318 [E2-196 and E2-318]). Studies of SINV strain TE12 mutants with each site eliminated identified the locations of carbohydrates by cryo-electron microscopy (S. V. Pletnev et al., Cell 105:127-136, 2001). In the current study, the effects of altered glycosylation on virion infectivity, growth in cells of vertebrates and invertebrates, heparin binding, virulence in mice, and replication in mosquitoes were assessed. Particle-to-PFU ratios for E1-139 and E2-196 mutant strains were similar to that for TE12, but this ratio for the E1-245 mutant was 100-fold lower than that for TE12. Elimination of either E2 glycosylation site increased virus binding to heparin and increased replication in BHK cells. Elimination of either E1 glycosylation site had no effect on heparin binding but resulted in an approximately 10-fold decrease in virus yield from BHK cells compared to the TE12 amount. No differences in pE2 processing were detected. E2-196 and E2-318 mutants were more virulent in mice after intracerebral inoculation, while E1-139 and E1-245 mutants were less virulent. The E1-245 mutant showed impaired replication in C7/10 mosquito cells and in Culex quinquefasciatus after intrathoracic inoculation. We conclude that the increased replication and virulence of E2-196 and E2-318 mutants are primarily due to increased efficiency of binding to heparan sulfate on mammalian cells. Lack of glycosylation at E1-139 or E1-245 impairs replication in vertebrate cells, while E1-245 also severely affects replication in invertebrate cells.


2009 ◽  
Vol 276 (1660) ◽  
pp. 1369-1378 ◽  
Author(s):  
Louis Lambrechts ◽  
Thomas W Scott

The traditional assumption that vector-borne pathogens should evolve towards a benign relationship with their arthropod vectors has been challenged on theoretical grounds and empirical evidence. However, in the case of arboviruses (arthropod-borne viruses), although a number of investigators have reported experimental evidence for virus-induced vector mortality, others have failed to detect any significant impact. Whether this variation in the observed level of arbovirus virulence depends on biological traits or experimental design is unclear. Here, we perform a meta-analysis of studies across a range of mosquito–virus systems to show that, overall, arboviruses do reduce the survival of their mosquito vectors, but that the magnitude of the effect depends on the vector/virus taxonomic groups and the mode of virus transmission. Alphaviruses were associated with highest virulence levels in mosquitoes. Horizontal transmission (intrathoracic inoculation or oral infection) was correlated with significant virus-induced mortality, whereas a lack of adverse effect was found for Aedes mosquitoes infected transovarially by bunyaviruses—a group of viruses characterized by high natural rates of vertical transmission in their enzootic vectors. Our findings are consistent with the general prediction that vertically transmitted pathogens should be less virulent than those transmitted horizontally. We conclude that varying degrees of virulence observed among vector–virus systems probably reflect different selective pressures imposed on arboviruses that are primarily transmitted horizontally versus vertically.


2007 ◽  
Vol 73 (23) ◽  
pp. 7711-7716 ◽  
Author(s):  
M. Ribière ◽  
P. Lallemand ◽  
A.-L. Iscache ◽  
F. Schurr ◽  
O. Celle ◽  
...  

ABSTRACT Knowledge of the spreading mechanism of honeybee pathogens within the hive is crucial to our understanding of bee disease dynamics. The aim of this study was to assess the presence of infectious chronic bee paralysis virus (CBPV) in bee excreta and evaluate its possible role as an indirect route of infection. Samples of paralyzed bees were (i) produced by experimental inoculation with purified virus and (ii) collected from hives exhibiting chronic paralysis. CBPV in bee heads or feces (crude or absorbed onto paper) was detected by reverse transcription-PCR. CBPV infectivity was assessed by intrathoracic inoculation of bees with virus extracted from feces and by placement of naive bees in cages previously occupied by contaminated individuals. CBPV RNA was systematically detected in the feces of naturally and experimentally infected bees and on the paper sheets that had been used to cover the floors of units containing bees artificially infected with CBPV or the floor of one naturally infected colony. Both intrathoracic inoculation of bees with virus extracted from feces and placement of bees in contaminated cages provoked overt disease in naive bees, thereby proving that the excreted virus was infectious and that this indirect route of infection could lead to overt chronic paralysis. This is the first experimental confirmation that infectious CBPV particles excreted in the feces of infected bees can infect naive bees and provoke overt disease by mere confinement of naive bees in a soiled environment.


Sign in / Sign up

Export Citation Format

Share Document