The Nobeyama Millimeter Array Survey for Protoplanetary Disks Around Protostar Candidates and T Tauri Stars in Taurus

Author(s):  
Nagayoshi Ohashi ◽  
Ryohei Kawabe ◽  
Masato Ishiguro ◽  
Masahiko Hayashi
1994 ◽  
Vol 212 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
Nagayoshi Ohashi ◽  
Ryohei Kawabe ◽  
Masato Ishiguro ◽  
Masahiko Hayashi

1994 ◽  
Vol 140 ◽  
pp. 274-275
Author(s):  
Nagayoshi Ohashi ◽  
Ryohei Kawabe ◽  
Masahiko Hayashi ◽  
Masato Ishiguro

AbstractThe Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 were invisible protostars and 6 were youngest T Tauri stars. We observed the 98 GHz continuum and CS(J=2-1) line emissions simultaneously with spatial resolutions of 2.8”- 8.8” (360 AU-1,200 AU). Unresolved continuum emission was detected from 5 of 6 T Tauri stars and 2 of 13 protostar candidates. The continuum emission arose from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability for the 98 GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.


2011 ◽  
Vol 526 ◽  
pp. A163 ◽  
Author(s):  
G. Aresu ◽  
I. Kamp ◽  
R. Meijerink ◽  
P. Woitke ◽  
W.-F. Thi ◽  
...  

2019 ◽  
Vol 632 ◽  
pp. A32 ◽  
Author(s):  
M. K. McClure

Context. The carbon content of protoplanetary disks is an important parameter to characterize planets formed at different disk radii. There is some evidence from far-infrared and submillimeter observations that gas in the outer disk is depleted in carbon, with a corresponding enhancement of carbon-rich ices at the disk midplane. Observations of the carbon content inside of the inner sublimation rim could confirm how much carbon remains locked in kilometer size bodies in the disk. Aims. I aim to determine the density, temperature, and carbon abundance inside the disk dust sublimation rim in a set of T Tauri stars with full protoplanetary disks. Methods. Using medium-resolution, near-infrared (0.8–2.5 μm) spectra and the new Gaia DR2 distances, I self-consistently determine the stellar, extinction, veiling, and accretion properties of the 26 stars in my sample. From these values, and non-accreting T Tauri spectral templates, I extract the inner disk excess of the target stars from their observed spectra. Then I identify a series of C0 recombination lines in 18 of these disks and use the CHIANTI atomic line database with an optically thin slab model to constrain the average ne, Te, and nc for these lines in the five disks with a complete set of lines. By comparing these values with other slab models of the inner disk using the Cloudy photoionization code, I also constrain nH and the carbon abundance, XC, and hence the amount of carbon “missing” from the slab. For one disk, DR Tau, I use relative abundances for the accretion stream from the literature to also determine XSi and XN. Results. The inner disks modeled here are extremely dense (nH ~ 1016 cm−3), warm (Te ~ 4500 K), and moderately ionized (log Xe ~ 3.3). Three of the five modeled disks show robust carbon depletion up to a factor of 42 relative to the solar value. I discuss multiple ways in which the “missing” carbon could be locked out of the accreting gas. Given the high-density inner disk gas, evidence for radial drift, and lack of obvious gaps in these three systems, their carbon depletion is most consistent with the “missing” carbon being sequestered in kilometer size bodies. For DR Tau, nitrogen and silicon are also depleted by factors of 45 and 4, respectively, suggesting that the kilometer size bodies into which the grains are locked were formed beyond the N2 snowline. I explore briefly what improvements in the models and observations are needed to better address this topic in the future.


2013 ◽  
Vol 8 (S299) ◽  
pp. 149-150
Author(s):  
Yukako Aimi ◽  
Misato Fukagawa ◽  
Tomonori Yasuda ◽  
Takuya Yamashita ◽  
Kouji Kawabata ◽  
...  

AbstractTemporal structural changes of protoplanetary disks surrounding T Tauri stars (TTSs) can cause magnitude variations of TTSs. On the other hand, variability is also expected due to cool spots and/or hot spots on the surface of the star, thus it is important to distinguish the causes of the observed variability. Our sample consists of 23 TTSs (22 classical T Tauri stars, 1 weak-lined T Tauri star) and 4 Herbig Ae/Be stars. The observations were performed over a period of about 3 months in the V, J, and KS band, simultaneously. We detected variability for all stars in the three bands (>0.05 mag in V, >0.09 mag in J, >0.09 mag in KS). Color-magnitude relations obtained between V, J, and KS bands suggest that stellar spots are not the only cause of variability for most of our targets. In addition, the data implies that six stellar systems contain larger grains than in the interstellar medium if the variability is only caused by extinction due to circumstellar matter.


2004 ◽  
Vol 202 ◽  
pp. 335-337
Author(s):  
Jane Gregorio-Hetem ◽  
Annibal Hetem

A model with two dust components is used do explain the circumstellar structure of weak-T Tauri stars. The IR-excess was calculated and compared to spectroscopic criteria in order to classify the objects according an evolutionary sequence. About 46% of the sample correspond to young main sequence stars showing dust distribution consistent with a disrupted disk, that could be possibly caused by the formation of a planetary system.


2015 ◽  
Vol 582 ◽  
pp. A105 ◽  
Author(s):  
S. Antonellini ◽  
I. Kamp ◽  
P. Riviere-Marichalar ◽  
R. Meijerink ◽  
P. Woitke ◽  
...  

1997 ◽  
Vol 182 ◽  
pp. 381-390
Author(s):  
Yoshimi Kitamura ◽  
Masao Saito ◽  
Ryohei Kawabe ◽  
Kazuyoshi Sunada

We are intensively studying low mass star formation with the radio telescopes at Nobeyama in Japan. Using both the Nobeyama 45 m dish equipped with a 2 × 2 array receiver and the Nobeyama Millimeter Array (NMA), we can cover a very wide spatial range from overall molecular clouds down to compact protoplanetary disks. With the 45 m dish we are investigating hierarchical structures of molecular clouds including star-forming cores. With NMA we are imaging disklike structures (i.e., envelopes, accretion disks, and protoplanetary disks) around protostars and T Tauri stars. Recently, we have completed our survey for dense disklike envelopes around eleven Class 0 & I protostars by NMA. In this paper, we will present our recent results of the disklike envelopes in addition to the previous NMA results of the disks around three T Tauri stars. On the basis of the data, we will discuss the evolution of the disklike structures (dense envelopes → tenuous ones → dispersing ones → accretion disks → protoplanetary ones), and propose a new scenario for the formation of low mass stars.


1996 ◽  
Vol 111 ◽  
pp. 2066 ◽  
Author(s):  
Scott J. Wolk ◽  
Frederick M. Walter

2013 ◽  
Vol 8 (S299) ◽  
pp. 94-98
Author(s):  
Fabien Anthonioz ◽  
F. Ménard ◽  
C. Pinte ◽  
W-F. Thi ◽  
J.-B. Lebouquin ◽  
...  

AbstractStudying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are bright enough to be routinely observed by Near IR interferometers. The data for the fainter T Tauri stars is much more sparse. In this contribution we present the results of our ongoing survey at the VLTI. We used the PIONIER combiner that allows the simultaneous use of 4 telescopes, yielding 6 baselines and 3 independent closure phases at once. PIONIER's integrated optics technology makes it a sensitive instrument. We have observed 22 T Tauri stars so far, the largest survey for T Tauri stars to this date.Our results demonstrate the very significant contribution of an extended component to the interferometric signal. The extended component is different from source to source and the data, with several baselines, offer a way to improve our knowledge of the disk geometry and/or composition. These results validate an earlier study by Pinte et al. 2008 and show that the dust inner radii of T Tauri disks now appear to be in better agreement with the expected position of the dust sublimation radius, contrary to previous claims.


Sign in / Sign up

Export Citation Format

Share Document