Zooplankton distribution in the coastal upwelling system along the Banc d’Arguin, Mauritania

Author(s):  
B. R. Kuipers ◽  
H. J. Witte ◽  
S. R. Gonzalez
Hydrobiologia ◽  
1993 ◽  
Vol 258 (1-3) ◽  
pp. 133-149 ◽  
Author(s):  
B. R. Kuipers ◽  
H. J. Witte ◽  
S. R. Gonzalez

2007 ◽  
Vol 5 (1) ◽  
pp. 17-45 ◽  
Author(s):  
Robert Vernet ◽  
Marcel Ott ◽  
Liliane Tarrou ◽  
Annabelle Gallin ◽  
Jade Géoris-Creuseveau

2002 ◽  
Author(s):  
Francisco P. Chavez ◽  
Richard T. Barber ◽  
Fei Chai ◽  
Yi Chao ◽  
Andrew P. De Vogelaere ◽  
...  

2021 ◽  
Vol 775 ◽  
pp. 145020
Author(s):  
Isabel Fuentes-Santos ◽  
Uxío Labarta ◽  
María José Fernández-Reiriz ◽  
Susan Kay ◽  
Solfrid Sætre Hjøllo ◽  
...  

Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Kämpf

Abstract. Satellite-derived chlorophyll a data using the standard NASA-OC3 (ocean colour) algorithm are strongly biased by coloured dissolved organic matter and suspended sediment of river discharges, which is a particular problem for the western Tasmanian shelf. This work reconstructs phytoplankton blooms in the study region using a quadratic regression between OC3 data and chlorophyll fluorescence based on the fluorescence line height (FLH) data. This regression is derived from satellite data of the nearby Bonney upwelling region, which is devoid of river influences. To this end, analyses of 10 years of MODIS-aqua satellite data reveal the existence of a highly productive ecosystem on the western Tasmanian shelf. The region normally experiences two phytoplankton blooms per annum. The first bloom occurs during late austral summer months as a consequence of upwelling-favourable coastal winds. Hence, the western Tasmanian shelf forms a previously unknown upwelling centre of the regional upwelling system, known as Great South Australian Coastal Upwelling System. The second phytoplankton bloom is a classical spring bloom also developing in the adjacent Tasman Sea. The author postulates that this region forms another important biological hot spot for the regional marine ecosystem.


2017 ◽  
Vol 14 (5) ◽  
pp. 1165-1179 ◽  
Author(s):  
Diana Zúñiga ◽  
Celia Santos ◽  
María Froján ◽  
Emilia Salgueiro ◽  
Marta M. Rufino ◽  
...  

Abstract. The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (±5.6) 106 valves m−2 d−1) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom-derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Furthermore, Chaetoceros spp. dominate during spring–early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.


Sign in / Sign up

Export Citation Format

Share Document