Phonetic Short-Term Memory Representation in Children’s Reading of Greek

Author(s):  
Costas D. Porpodas
2020 ◽  
Author(s):  
Jim Grange ◽  
Stuart Bryan Moore ◽  
Ed David John Berry

Visual short-term memory (vSTM) is often measured via continuous-report tasks whereby participants are presented with stimuli that vary along a continuous dimension (e.g., colour) with the goal of memorising the stimuli features. At test, participants are probed to recall the feature value of one of the memoranda in a continuous manner (e.g., by clicking on a colour wheel). The angular deviation between the participant response and the true feature value provides an estimate of recall---and hence, vSTM---precision. Two prominent models of performance on such tasks are the two- and three-component mixture models (Bays et al., 2009; Zhang & Luck, 2008). Both models decompose participant responses into probabilistic mixtures of: (1) responses to the true target value based on a noisy memory representation; (2) random guessing when memory fails. In addition, the three-component model proposes (3) responses to a non-target feature value (i.e., binding errors). Here we report the development of mixtur, an open-source package written for the statistical programming language R that facilitates the fitting of the 2- and 3-component mixture models to continuous report data. We also report the results of several simulations conducted to develop recommendations for researchers on trial numbers, set-sizes and memoranda similarity, as well as conducting parameter recovery and model recovery simulations. It is our hope that mixtur will lower the barrier of entry for utilising mixture modelling


2002 ◽  
Vol 10 (3-4) ◽  
pp. 185-199 ◽  
Author(s):  
Tom Ziemke ◽  
Mikael Thieme

This article addresses the relation between memory, representation, and adaptive behavior. More specifically, it demonstrates and discusses the use of synaptic plasticity, realized through neuromodulation of sensorimotor mappings, as a short-term memory mechanism in delayed response tasks. A number of experiments with extended sequential cascaded networks, that is, higher-order recurrent neural nets, controlling simple robotic agents in six different delayed response tasks are presented. The focus of the analysis is on how short-term memory is realized in such control networks through the dynamic modulation of sensorimotor mappings (rather than through feedback of neuronal activation, as in conventional recurrent nets), and how these internal dynamics interact with environmental/behavioral dynamics. In particular, it is demonstrated in the analysis of the last experimental scenario how this type of network can make very selective use of feedback/memory, while as far as possible limiting itself to the use of reactive sensorimotor mechanisms and occasional switches between them.


2005 ◽  
Vol 148 (7) ◽  
pp. 733-739 ◽  
Author(s):  
V. Braun ◽  
A. Albrecht ◽  
T. Kretschmer ◽  
H.-P. Richter ◽  
A. Wunderlich

2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


Sign in / Sign up

Export Citation Format

Share Document