Development of Soil Microbial Activities, Soil Fauna and Humic Matter During Remediation and Recultivation of Pah-Contaminated Soil

Author(s):  
M. Kraatz ◽  
C. Emmerling ◽  
D. Schröder
2008 ◽  
Vol 3 (No. 1) ◽  
pp. 12-20 ◽  
Author(s):  
G. Mühlbachová

A 12-day incubation experiment with the addition of glucose to soils contaminated with persistent organic pollutants (POPs) was carried out in order to estimate the potential microbial activities and the potential of the soil microbial biomass C to degrade 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). The microbial activities were affected in different ways depending on the type of pollutant. The soil organic matter also played an important role. The microbial activities were affected particularly by high concentrations of PAHs in the soils. Soil microorganisms in the PAHs contaminated soil used the added glucose to a lesser extent than in the non-contaminated soil, which in the contaminated soil resulted in a higher microbial biomass content during the first day of incubation. DDT, DDD and DDE, and PCB affected the soil microbial activities differently and, in comparison with control soils, decreased the microbial biomass C during the incubation. The increased microbial activities led to a significant decrease of PAH up to 44.6% in the soil long-term contaminated with PAHs, and up to 14% in the control soil after 12 days of incubation. No decrease of PAHs concentrations was observed in the soil which was previously amended with sewage sludges containing PAHs and had more organic matter from the sewage sludges. DDT and its derivates DDD and DDE decreased by about 10%, whereas the PCB contents were not affected at all by microbial activities. Studies on the microbial degradation of POPs could be useful for the development of methods focused on the remediation of the contaminated sites. An increase of soil microbial activities caused by addition of organic substrates can contribute to the degradation of pollutants in some soils. However, in situ biodegradation may be limited because of a complex set of environmental conditions, particularly of the soil organic matter. The degradability and availability of POPs for the soil microorganisms has to be estimated individually for each contaminated site.


Author(s):  
Jehan Khalil ◽  
Hasan Habib ◽  
Michael Alabboud ◽  
Safwan Mohammed

AbstractOlive mill wastewater is one of the environmental problems in semiarid regions. The main goals of this study were to investigate the impacts of different olive mill wastewater levels on durum wheat (Triticum aestivum var. Douma1) production and soil microbial activities (i.e., bacteria and fungi). A pot experiment was conducted during the growing seasons 2015/2017 to evaluate the effect of three levels of olive mill wastewater on both growth and productivity attributes of wheat. Vertisol soil samples were collected from southern Syria. Two months before wheat cultivation, three levels of olive mill wastewater: T5 (5 L/m 2), T10 (10 L/m2) and T15 (15 L/m 2) were added to pots filled with the collected soil samples. Also, a control (T0) free of olive mill wastewater was considered as a reference. Results showed a significant increase (p < 0.05) in germination rate (%), plant height (cm), ear length (cm), kernels number, kernels weight per ear (g) and grain yield (g/m2) compared to control. However, T5 treatment did not induce a significant increase in terms of ear length, kernels weight per ear or yield (in the second season). On the other hand, T10 treatment had recorded the best results compared with the other two treatments (T5, T15). Similarly, the results showed a significant increase in the number of bacterial and fungi cells by increasing olive mill wastewater concentration. This research provides promising results toward using olive mill wastewater in an eco-friendly way under Syrian conditions.


2016 ◽  
Vol 51 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Jiřina Száková ◽  
Jitka Havlíčková ◽  
Adéla Šípková ◽  
Jiří Gabriel ◽  
Karel Švec ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 275 ◽  
pp. 130062
Author(s):  
Luge Rong ◽  
Xuehao Zheng ◽  
Belay Tafa Oba ◽  
Chenbo Shen ◽  
Xiaoxu Wang ◽  
...  

2012 ◽  
Vol 47 (6) ◽  
pp. 854-862 ◽  
Author(s):  
Irenus A. Tazisong ◽  
Zachary N. Senwo ◽  
Miranda I. Williams

Sign in / Sign up

Export Citation Format

Share Document