Sedimentary diatom concentrations and accumulation rates as predictors of lake trophic state

Author(s):  
Thomas J. Whitmore
1980 ◽  
Vol 37 (4) ◽  
pp. 640-646 ◽  
Author(s):  
R. P. Reid ◽  
C. H. Pharo ◽  
W. C. Barnes

Apatite is a common accessory mineral in the source rocks for the glacial debris supplying sediments to many Canadian lakes. A method has been developed which uses scanning electron microscopy and energy dispersive X-ray emission spectrometry for direct identification of apatite. This method has been used to examine the apatite content of various size fractions in Kamloops Lake sediments. Apatite concentrations obtained by this direct examination correlate well (r > 0.999) with apatite concentrations determined by chemical analyses and indicate that, in addition to comprising as much as 70% of the total phosphorus load, apatite may comprise as much as one-third of the "dissolved" (< 0.45 μm) inorganic phosphorus load. Consequently the use of classical (e.g. Vollenweider 1968; Vollenweider and Dillon 1974) methods of estimating lake trophic state from inorganic phosphorus concentrations in lake water must be done with care, recognizing that the bulk of inorganic phosphorus in lakes deriving sediment from glaciated igneous or metamorphic terrains may be in the form of apatite.Key words: apatite, lake, trophic state, phosphorus load, scanning electron microscopy


2019 ◽  
Vol 16 (19) ◽  
pp. 3725-3746 ◽  
Author(s):  
Annika Fiskal ◽  
Longhui Deng ◽  
Anja Michel ◽  
Philip Eickenbusch ◽  
Xingguo Han ◽  
...  

Abstract. Even though human-induced eutrophication has severely impacted temperate lake ecosystems over the last centuries, the effects on total organic carbon (TOC) burial and mineralization are not well understood. We study these effects based on sedimentary records from the last 180 years in five Swiss lakes that differ in trophic state. We compare changes in TOC content and modeled TOC accumulation rates through time to historical data on algae blooms, water column anoxia, wastewater treatment, artificial lake ventilation, and water column phosphorus (P) concentrations. We furthermore investigate the effects of eutrophication on rates of microbial TOC mineralization and vertical distributions of microbial respiration reactions in sediments. Our results indicate that the history of eutrophication is well recorded in the sedimentary record. Overall, eutrophic lakes have higher TOC burial and accumulation rates, and subsurface peaks in TOC coincide with past periods of elevated P concentrations in lake water. Sediments of eutrophic lakes, moreover, have higher rates of total respiration and higher contributions of methanogenesis to total respiration. However, we found strong overlaps in the distributions of respiration reactions involving different electron acceptors in all lakes regardless of lake trophic state. Moreover, even though water column P concentrations have been reduced by ∼ 50 %–90 % since the period of peak eutrophication in the 1970s, TOC burial and accumulation rates have only decreased significantly, by ∼ 20 % and 25 %, in two of the five lakes. Hereby there is no clear relationship between the magnitude of the P concentration decrease and the change in TOC burial and accumulation rate. Instead, data from one eutrophic lake suggest that artificial ventilation, which has been used to prevent water column anoxia in this lake for 35 years, may help sustain high rates of TOC burial and accumulation in sediments despite water column P concentrations being strongly reduced. Our study provides novel insights into the influence of human activities in lakes and lake watersheds on lake sediments as carbon sinks and habitats for diverse microbial respiration processes.


Hydrobiologia ◽  
1996 ◽  
Vol 319 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Ray W. Drenner ◽  
J. Durward Smith ◽  
Stephen T. Threlkeld

1992 ◽  
Vol 1 (3) ◽  
pp. 173-197 ◽  
Author(s):  
Eugene B. Welch ◽  
Richard P. Barbiero ◽  
Debra Bouchard ◽  
Clain A. Jones

Author(s):  
Farnaz Nojavan ◽  
Betty J Kreakie ◽  
Jeffrey W Hollister ◽  
Song Qian

Lake trophic state indices have long been used to provide a measure of the trophic state of lakes. Over time it has been determined that these indices perform better when they utilize multiple metrics and provide a continuous measurement of trophic state. We utilize such a method for trophic state that is based upon a Proportional Odds Logistic Regression (POLR) model and extend this model with a Bayesian multilevel model that predicts nutrient concentrations from universally available GIS data. This Bayesian multilevel model provides relatively accurate measures of trophic state and has an overall accuracy of 60%. The approach illustrates a method for estimating a continuous, mutli-metric trophic state index for any lake in the United States. Future improvements to the model will focus on improving overall accuracy and use variables that are more sensitive to change over time.


Sign in / Sign up

Export Citation Format

Share Document