Ductile Fracture Behavior Near the Crack-Tip — An Overview of Recent Japanese Research

Author(s):  
M. Sakata
1987 ◽  
Vol 53 (485) ◽  
pp. 116-121 ◽  
Author(s):  
Masaru SAKATA ◽  
Shigeru AOKI ◽  
Kikuo KISHIMOTO ◽  
Tsutomu YOSHIDA ◽  
Hiroshi FUKANO

Author(s):  
Katsumasa Miyazaki ◽  
Kunio Hasegawa ◽  
Koichi Saito

The fitness-for-service codes require the characterization of non-aligned multiple flaws for flaw evaluation, which is performed using a flaw proximity rule. Worldwide, almost all such codes provide their own proximity rule, often with unclear technical bases of the application of proximity rule to ductile or fully plastic fracture. In particular, the effect of flaw dimensions of multiple surface flaws on fully plastic fracture of non-aligned multiple flaws had not been clear. To clarify the effect of the difference of part through-wall and through-wall flaws on the behavior of fully plastic fracture, the fracture tests of flat plate specimens with non-aligned multiple part through-wall flaws were conducted. When the flaw depth a was shallow with 0.4 in ratio of a to thickness t, the maximum load Pmax occurred at penetration of multiple flaws and the effect of vertical distance of non-aligned multiple flaws H on Pmax was not so significant. However, when flaw depth was deep with 0.8 in a/t, Pmax occurred after penetration of flaws and the effect of H on Pmax could be seen clearly. It was judged that the through-wall flaw tests were appropriate for discussion of the effect of H on Pmax and the alignment rule of multiple flaws. In addition, in order to clarify the appropriate length parameter to estimate Pmax of test specimens with dissimilar non-aligned through-wall multiple flaws, the fracture tests of plate specimens were also conducted. The effect of different flaw length on Pmax was discussed with maximum, minimum and averages of dissimilar non-aligned multiple flaw lengths. Experimental results showed that the maximum length lmax would be an appropriate length parameter to estimate Pmax, when the non-aligned multiple through-wall flaws were dissimilar.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4430 ◽  
Author(s):  
Jingming Zhu ◽  
Jun Luo ◽  
Yuanzun Sun

The superior fracture toughness of zirconia is closely correlated with stress-induced martensitic phase transformation around a crack tip. In this study, a modified phase field (PF) model coupling phase transformation and fracture is proposed to study the fracture behavior and toughening effect of tetragonal zirconia polycrystal (TZP). The stress-induced tetragonal to monoclinic (t–m) phase transformation around a static or propagating crack is characterized with PF simulations. It is shown that the finite size and shape of the transformation zone under different loads and ambient temperatures can be well predicted with the proposed PF model. The phase transformation may decrease the stress level around the crack tip, which implies the toughening effect. After that, crack propagation in TZP is studied. As the stress field is perturbed by the phase transformation patterns, the crack may experience deflection and branching in the propagation process. It is found that the toughness of the grain boundaries (GBs) has important influences on the crack propagation mode. For TZP with strong GBs, the crack is more likely to propagate transgranularly while, for TZP with weak GBs, intergranular crack propagation is prevalent. Besides that, the crystal orientation and the external load can also influence the topology of crack propagation.


Author(s):  
Youn-Young Jang ◽  
Ji-Hee Moon ◽  
Nam-Su Huh ◽  
Ki-Seok Kim ◽  
Woo-Yeon Cho ◽  
...  

Abstract This paper is aimed to characterize ductile and cleavage fracture behavior of API X70 pipeline steel and investigate applicability of a micro-damage mechanics model to simulate static and dynamic crack propagation of single-edge notched tension (SENT) and drop-weight tear test (DWTT) specimens, as well as a local approach to describe cleavage fracture behavior. Gurson-Tvergaard-Needleman (GTN) model was applied to simulate ductile fracture behavior of SENT and DWTT specimens, where GTN model has been widely known for well-established model to characterize micro-damage process of void nucleation, growth and coalescence. As for a local approach, Beremin model was considered to estimate probability of cleavage fracture. In this regard, this study was especially focused on abnormal fracture appearance of DWTT specimen. In the present study, firstly, experiment data from tensile specimen test was used to obtain plastic flow curve (i.e. stress and strain curve). And load-CMOD and J-integral/CTOD resistance curves obtained from SENT test were used to characterize static ductile fracture and calibrate GTN model parameters for X70 pipeline steel. And the calibrated GTN model parameters were verified by comparing experiment data from DWTT test such as load-displacement and crack length-time curves with those from FE analysis. To accommodate dynamic effect on material properties, rate-dependent stress-strain curves were considered in FE analyses. To describe cleavage fracture, the Weibull stress was calculated from FE analyses of DWTT and Weibull parameters were calibrated by comparing with probability distribution of cleavage fracture from experiment data of DWTT specimen. Using Weibull parameters, the whole of cleavage fracture probability can be estimated as ductile shear area of DWTT specimen increases.


Sign in / Sign up

Export Citation Format

Share Document