The Role of Methane Hydrate in Ocean Carbon Chemistry and Biogeochemical Cycling

Author(s):  
Richard B. Coffin ◽  
Kenneth S. Grabowski ◽  
Jeffrey P. Chanton
2021 ◽  
Author(s):  
Lauren E. Manck ◽  
Jiwoon Park ◽  
Benjamin J. Tully ◽  
Alfonso M. Poire ◽  
Randelle M. Bundy ◽  
...  

AbstractIt is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.


Author(s):  
James M. Vose ◽  
Wayne T. Swank ◽  
Mary Beth Adams ◽  
Devendra Amatya ◽  
John Campbell ◽  
...  

2021 ◽  
Author(s):  
Rick Stafford ◽  
Zach Boakes ◽  
Alice Hall ◽  
Georgia Jones

Abstract The ocean is a net sequester of carbon dioxide, predominantly through low biomass, high productivity phytoplankton photosynthesis. Selective removal of predatory fish through extractive fishing alters the community structure of the ocean, with an increased biomass of more productive, low trophic level fish and higher overall respiration rates, despite possible decreases in total fish biomass. High pressure fishing on predators may result in as much as a 19% increase in respiration from fish communities and could prove highly significant in global carbon budgets.


Author(s):  
Richard Stafford ◽  
Zach Boakes ◽  
Alice E. Hall ◽  
Georgia C. A. Jones

AbstractTotal ocean carbon exceeds 40,000 GT either dissolved in the water column or buried in ocean sediments, and the ocean continues to sequester carbon from the atmosphere. Selective removal of predatory fish through extractive fishing alters the community structure of the ocean. This altered community results in increased biomass of more productive, low trophic level fish, higher overall fish respiration rates and lower carbon sequestration rates from fish, despite possible decreases in total fish biomass. High-pressure fishing on high trophic level fish, a globally occurring phenomenon, may result in as much as a 19% increase in respiration from fish communities overall. This increase in respiration will reduce sequestration rates and could prove highly significant in global carbon budgets. Preliminary estimates suggest a loss of sequestration equating to around 90Mt C.year−1 (~ 10% of total ocean sequestration or ~ 1% of anthropogenic fossil fuel emissions per year). Ultimately, to reduce these carbon emissions, fishing needs to be carbon optimised, alongside other fisheries management outcomes, which may mean that fewer higher trophic level fish are removed. This study highlights the potential magnitude of fishing on ocean carbon dynamics and presents the key uncertainties (including understanding the effects of fishing on zoo- and phytoplankton communities) we need to urgently research to accurately quantify the effects and model future fishing practices. Graphical Abstract


RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17795-17804
Author(s):  
Pinnelli S. R. Prasad ◽  
Burla Sai Kiran ◽  
Kandadai Sowjanya

Rapid and efficient methane hydrate conversions by utilising the water molecules confined in intra- and inter-granular space of silica powders.


Sign in / Sign up

Export Citation Format

Share Document