siderophore production
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 56)

H-INDEX

43
(FIVE YEARS 4)

Author(s):  
Caroline Mercy Andrew Swamidoss ◽  
Ramachandran Chelliah ◽  
Deog-Hwan Oh

2021 ◽  
Vol 8 ◽  
Author(s):  
Fernando Oliveira ◽  
Tânia Lima ◽  
Alexandra Correia ◽  
Ana Margarida Silva ◽  
Cristina Soares ◽  
...  

Iron acquisition through siderophores, a class of small, potent iron-chelating organic molecules, is a widely spread strategy among pathogens to survive in the iron-restricted environment found in the host. Although these molecules have been implicated in the pathogenesis of several species, there is currently no comprehensive study addressing siderophore production in Staphylococcus epidermidis. Staphylococcus epidermidis is an innocuous skin commensal bacterium. The species, though, has emerged as a leading cause of implant-associated infections, significantly supported by an inherent ability to form biofilms. The process of adaptation from skin niche environments to the hostile conditions during invasion is yet not fully understood. Herein, we addressed the possible role of siderophore production in S. epidermidis virulence. We first identified and deleted a siderophore homolog locus, sfaABCD, and provided evidence for its involvement in iron acquisition. Our findings further suggested the involvement of siderophores in the protection against oxidative stress-induced damage and demonstrated the in vivo relevance of a siderophore-mediated iron acquisition during S. epidermidis infections. Conclusively, this study addressed, for the first time in this species, the underlying mechanisms of siderophore production, highlighting the importance of a siderophore-mediated iron acquisition under host relevant conditions and, most importantly, its contribution to survival within the host.


2021 ◽  
Author(s):  
Michaela J. Eickhoff ◽  
Chenyi Fei ◽  
Jian-Ping Cong ◽  
Bonnie L. Bassler

Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and post-transcriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the LuxT transcription factor was shown to control V. harveyiqrr1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA-Sequencing to reveal that, beyond control of qrr1, LuxT is a global regulator of 414 V. harveyi genes including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ, encoding a transcription factor, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ-dependent and one that is SwrZ-independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low cell density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae, but swrZ is less well conserved. In a test case to examine the relationship between LuxT and SwrZ, we find that in Aliivibrio fischeri, LuxT also functions as a swrZ repressor, and LuxT activates A. fischeri siderophore production via swrZ repression. Our results indicate that LuxT is a major regulator among Vibrionaceae, and, in the species that also possess swrZ, LuxT functions with SwrZ to control gene expression.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S595-S595
Author(s):  
Elizabeth Nowak ◽  
Ekta Bansal ◽  
Anthony Baffoe-Bonnie ◽  
Nammalwar Sriranganathan ◽  
Thomas Kerkering ◽  
...  

Abstract Background Multidrug resistant Acinetobacter baumannii (MDR-Ab) is a Gram-negative bacterium known for causing severe nosocomial infections, attributed in part to its formation of biofilm. Siderophore is a virulence factor known to support biofilm formation by regulating iron availability. In this study, we screened 44 isolates of MDR-Ab from our Gram-negative repository to determine the strains that phenotypically form biofilm and produce siderophore. The results were compared to Pseudomonas aeruginosa PAO1, which produces both biofilm and siderophore. Methods Isolates were grown overnight in minimal M9 medium supplemented with casamino acids and hydroxyquinones at 37°C. Bacterial cells were normalized (to OD 600=0.01) and a standard diluted 10-3 tube was used in the study. A 96-well plate was inoculated with 100 microliters of each isolate in quadruplicates. This process was repeated in Tygon tubes with 50 microliters of each isolate in triplicates. The plate and Tygon tubes were incubated statically for 48 hours at 30°C and then stained with crystal violet. The contents were dissolved in 33% glacial acetic acid and analyzed by spectrophotometry to measure biofilm formation. Siderophore secretion was measured in supernatants with Chrome Azurol S (CAS) reagent and production was observed on CAS agar plates. Results High levels of biofilm formation were observed in 8 strains of MDR-Ab in the 96-well plate (3, 4, 9, 22, 61, 1010, 1012, 1022) and 6 strains in Tygon tubes (3, 4, 16, 66, 1002, 1010) (Fig. 1). There was minimal siderophore production in MDR-Ab isolates compared to PAO1 in both the 96-well plate and Tygon tubes (Fig. 2). Only 4 strains lacked siderophore production on CAS agar and were inversely negative for the secretion in medium. Figure 1 Biofilm formation in a 96-well plate and Tygon tubes (A) High levels of biofilm formation were observed in MDR-Ab strain numbers 3, 4, 9, 22, 61, 1010, 1012, 1022 in the 96-well plate. (B) High levels of biofilm formation were observed in MDR-Ab strain numbers 3, 4, 16, 66, 1002, 1010 in Tygon tubes. Figure 2 Degree of siderophore production in a 96-well plate and Tygon tubes Siderophore production of MDR-Ab was limited compared to PAO1 after inoculation in a 96-well plate (A) and in Tygon tubes (B). Conclusion Many strains of MDR-Ab readily form biofilm. Overall siderophore production is lower in MDR-Ab compared to consistent production by PAO1, but this does not appear to affect MDR-Ab’s ability to form biofilm. Unlike in PAO1, biofilm formation in MDR-Ab may occur independently of siderophore production. This research serves as a basis for understanding future MDR-Ab biofilm elimination in patient catheters and indwelling devices. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 189 ◽  
pp. 106310
Author(s):  
Chiho Murakami ◽  
Arowu R. Tanaka ◽  
Yuichiro Sato ◽  
Yasuhiro Kimura ◽  
Kinjiro Morimoto

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Pooja Sangwan ◽  
Kushal Raj ◽  
Leela Wati ◽  
Anil Kumar

Abstract Background Pearl millet remains prone to many diseases; among them downy mildew caused by Sclerospora graminicola (Sacc.) Schroet is economically more important. The use of endophytic bacteria for management of downy mildew of pearl millet as eco-friendly approach is increasing attention as sustainable alternative to pesticides. The objective of the present study was to isolate endophytic bacteria from roots of pearl millet cultivars and assess for biocontrol activity against Sclerospora graminicola. Results Thirty pearl millet root bacterial endophytes (PMRBEs) were isolated and screened in vitro for biocontrol activities such as: siderophore production, hydrogen cyanide (HCN) production and 1-amino cyclopropane-1-carboxylate (ACC) deaminase activity. Sixteen isolates possessed siderophore production potential, 3 isolates were found to be HCN producers, and 30% of the bacterial endophytes showed a good growth on ACC supplemented plates. On the basis of biocontrol activities, promising endophyte PMRBE6 was selected for seed treatment as well as a foliar spray to manage downy mildew of pearl millet in screen house experiment. The isolate PMRBE6 was found to be effective in managing downy mildew disease. Grain yield, test weight, plant height and average number of productive tillers were found to be maximum on inoculation of seeds of different pearl millet cultivars with PMRBE6, and the results were statistically significant as compared to control. Conclusions On the basis of biochemical characterization and partial 16S rRNA sequencing, the isolate PMRBE6 was identified as Bacillus subtilis strain PD4 (Accession no. MN400209). Pearl millet root bacterial endophyte (PMRBE6) exhibiting biocontrol activities could be exploited in friendly, sustainable organic agriculture.


2021 ◽  
Vol 22 (17) ◽  
pp. 9196
Author(s):  
Elias Eger ◽  
Stefan E. Heiden ◽  
Karsten Becker ◽  
Andrea Rau ◽  
Katharina Geisenhainer ◽  
...  

Background: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, enabled by the presence of the respective virulence genes, which are partly carried on plasmids. Methods: Here, we analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection. By applying both genomic and phenotypic experiments and combining basic science with clinical approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth. This also included bioinformatics analysis of a chromosomal virulence plasmid integration event. Results: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. Conclusion: Our study contributes not only to the understanding of hvKp and the association between hypervirulence and clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead to tremendous public health implications.


2021 ◽  
Vol 7 (8) ◽  
pp. 665
Author(s):  
Anja Černoša ◽  
Xiaohuan Sun ◽  
Cene Gostinčar ◽  
Chao Fang ◽  
Nina Gunde-Cimerman ◽  
...  

The black yeast-like fungus Aureobasidium melanogenum is an opportunistic human pathogen frequently found indoors. Its traits, potentially linked to pathogenesis, have never been systematically studied. Here, we examine 49 A. melanogenum strains for growth at 37 °C, siderophore production, hemolytic activity, and assimilation of hydrocarbons and human neurotransmitters and report within-species variability. All but one strain grew at 37 °C. All strains produced siderophores and showed some hemolytic activity. The largest differences between strains were observed in the assimilation of hydrocarbons and human neurotransmitters. We show for the first time that fungi from the order Dothideales can assimilate aromatic hydrocarbons. To explain the background, we sequenced the genomes of all 49 strains and identified genes putatively involved in siderophore production and hemolysis. Genomic analysis revealed a fairly structured population of A. melanogenum, raising the possibility that some phylogenetic lineages have higher virulence potential than others. Population genomics indicated that the species is strictly clonal, although more than half of the genomes were diploid. The existence of relatively heterozygous diploids in an otherwise clonal species is described for only the second time in fungi. The genomic and phenotypic data from this study should help to resolve the non-trivial taxonomy of the genus Aureobasidium and reduce the medical hazards of exploiting the biotechnological potential of other, non-pathogenic species of this genus.


2021 ◽  
Author(s):  
Lauren E. Manck ◽  
Jiwoon Park ◽  
Benjamin J. Tully ◽  
Alfonso M. Poire ◽  
Randelle M. Bundy ◽  
...  

AbstractIt is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.


2021 ◽  
Vol 9 (8) ◽  
pp. 1558
Author(s):  
Tania Henriquez ◽  
Heinrich Jung

MxtR/ErdR (also called CrbS/CrbR) is a two-component system previously identified as important for the utilization of acetate in Vibrio cholerae and some Pseudomonas species. In addition, evidence has been found in Pseudomonas aeruginosa for a role in regulating the synthesis and expression, respectively, of virulence factors such as siderophores and RND transporters. In this context, we investigated the physiological role of the MxtR/ErdR system in the soil bacterium Pseudomonas putida KT2440. To that end, mxtR and erdR were individually deleted and the ability of the resulting mutants to metabolize different carbon sources was analyzed in comparison to wild type. We also assessed the impact of the deletions on siderophore production, expression of mexEF-oprN (RND transporter), and the biocontrol properties of the strain. Furthermore, the MxtR/ErdR-dependent expression of putative target genes and binding of ErdR to respective promoter regions were analyzed. Our results indicated that the MxtR/ErdR system is active and essential for acetate utilization in P. putida KT2440. Expression of scpC, pp_0354, and acsA-I was stimulated by acetate, while direct interactions of ErdR with the promoter regions of the genes scpC, pp_0354, and actP-I were demonstrated by an electromobility shift assay. Finally, our results suggested that MxtR/ErdR is neither involved in regulating siderophore production nor the expression of mexEF-oprN in P. putida KT2440 under the conditions tested.


Sign in / Sign up

Export Citation Format

Share Document