scholarly journals Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean

2021 ◽  
Author(s):  
Lauren E. Manck ◽  
Jiwoon Park ◽  
Benjamin J. Tully ◽  
Alfonso M. Poire ◽  
Randelle M. Bundy ◽  
...  

AbstractIt is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2002 ◽  
Vol 49 (24-25) ◽  
pp. 5297-5301 ◽  
Author(s):  
Toshiro Saino ◽  
Alexander Bychkov ◽  
Chen-Tung Arthur Chen ◽  
Paul J Harrison

2015 ◽  
Vol 12 (8) ◽  
pp. 5907-5940
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


2012 ◽  
Vol 140 (4) ◽  
pp. 1347-1355 ◽  
Author(s):  
Ge Chen ◽  
Chengcheng Qian ◽  
Caiyun Zhang

Sea level pressure (SLP) acts, on the one hand, as a “bridge parameter” to which geophysical properties at the air–sea interface (e.g., wind stress and sea surface height) are linked, and on the other hand, as an “index parameter” by which major atmospheric oscillations, including the well-known Southern Oscillation, are defined. Using 144 yr (1854–1997) of extended reconstructed SLP data, seasonal patterns of its variability are reinvestigated in detail. New features on fundamental structure of its annual and semiannual cycles are revealed in two aspects. First, the spatiotemporal patterns of yearly and half-yearly SLPs are basically determined by a network of “amphidromes,” which are surrounded by rotational variations. Fourteen cyclonic and anticyclonic annual SLP amphidromes (half each and often in pair) are found in the global ocean, while the numbers of the two types of semiannual amphidrome are 11 and 9, respectively. The second dominant feature in SLP variability is the pattern of oscillation or seesaw for both annual and semiannual components. At least eight oscillation zones are identified for the annual cycle, which can be categorized into a boreal winter mode and an austral winter mode. As for the semiannual cycle, the seesaw pattern is geographically divided into three regimes: the North Pacific regime, the North Atlantic regime, and the Southern Ocean regime. These findings serve as a new contribution to characterizing and understanding the seasonality of the global ocean–atmosphere system.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


2011 ◽  
Vol 7 (2) ◽  
pp. 487-499 ◽  
Author(s):  
V. Kamphuis ◽  
S. E. Huisman ◽  
H. A. Dijkstra

Abstract. To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterised by an Atlantic Meridional Overturning Circulation (MOC) with a deep water formation at northern latitudes and the absence of such a deep water formation in the North Pacific. This MOC asymmetry is often attributed to the difference in surface freshwater flux: the Atlantic as a whole is a basin with net evaporation, while the Pacific receives net precipitation. This issue is revisited in this paper by considering the global ocean circulation on a retrograde rotating earth, computing an equilibrium state of the coupled atmosphere-ocean-land surface-sea ice model CCSM3. The Atlantic-Pacific asymmetry in surface freshwater flux is indeed reversed, but the ocean circulation pattern is not an Inverse Conveyor state (with deep water formation in the North Pacific) as there is relatively weak but intermittently strong deep water formation in the North Atlantic. Using a fully-implicit, global ocean-only model the stability properties of the Atlantic MOC on a retrograde rotating earth are also investigated, showing a similar regime of multiple equilibria as in the present-day case. These results indicate that the present-day asymmetry in surface freshwater flux is not the most important factor setting the Atlantic-Pacific salinity difference and, thereby, the asymmetry in the global MOC.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2012 ◽  
Vol 25 (21) ◽  
pp. 7625-7642 ◽  
Author(s):  
Yuki Tanaka ◽  
Ichiro Yasuda ◽  
Hiroyasu Hasumi ◽  
Hiroaki Tatebe ◽  
Satoshi Osafune

Diapycnal mixing induced by tide–topography interaction, one of the essential factors maintaining the global ocean circulation and hence the global climate, is modulated by the 18.6-yr period oscillation of the lunar orbital inclination, and has therefore been hypothesized to influence bidecadal climate variability. In this study, the spatial distribution of diapycnal diffusivity together with its 18.6-yr oscillation estimated from a global tide model is incorporated into a state-of-the-art numerical coupled climate model to investigate its effects on climate variability over the North Pacific and to understand the underlying physical mechanism. It is shown that a significant sea surface temperature (SST) anomaly with a period of 18.6 years appears in the Kuroshio–Oyashio Extension region; a positive (negative) SST anomaly tends to occur during strong (weak) tidal mixing. This is first induced by anomalous horizontal circulation localized around the Kuril Straits, where enhanced modulation of tidal mixing exists, and then amplified through a positive feedback due to midlatitude air–sea interactions. The resulting SST and sea level pressure variability patterns are reminiscent of those associated with one of the most prominent modes of climate variability in the North Pacific known as the Pacific decadal oscillation, suggesting the potential for improving climate predictability by taking into account the 18.6-yr modulation of tidal mixing.


2015 ◽  
Vol 28 (23) ◽  
pp. 9451-9458 ◽  
Author(s):  
Changlin Chen ◽  
Guihua Wang

Abstract The annual cycle of sea surface temperature (SST) in the North Pacific Ocean is examined in terms of its response to global warming based on climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). As the global ocean warms up, the SST in the North Pacific generally tends to increase and the warming is greater in summer than in winter, leading to a significant intensification of SST annual cycle. The mixed layer temperature equation is used to examine the mechanism of this intensification. Results show that the decrease of mixed layer depth (MLD) in summer is the main reason behind the intensification of SST annual cycle. Because the MLD in summer is much shallower than that in winter, the incoming net heat flux is trapped in a thinner surface layer in summer, causing a warmer summer SST and the amplification of SST annual cycle. The change of the SST annual cycle in the North Pacific may have profound ecological impacts.


Sign in / Sign up

Export Citation Format

Share Document