Metal Abundances in the Hot ISM of Elliptical Galaxies

1998 ◽  
pp. 53-56 ◽  
Author(s):  
M. Loewenstein ◽  
R. F. Mushotzky
2009 ◽  
Vol 5 (H15) ◽  
pp. 286-286
Author(s):  
S. Konami ◽  
K. Matsushita ◽  
K. Sato ◽  
R. Nagino ◽  
N. Isobe ◽  
...  

Metal abundances of the hot X-ray emitting interstellar medium (ISM) include important information to understand the history of star formation and evolution of galaxies. The metals are mainly synthesized by Type Ia (SNe Ia) and stellar mass loss in elliptical galaxies. The productions of stellar mass loss reflect stellar metallicity. SNe Ia mainly product Fe. Therefore, the abundance pattern of ISM can play key role to investigate the metal enrichment history.


1983 ◽  
Vol 6 ◽  
pp. 157-163
Author(s):  
D. Crampton ◽  
R.D. McClure ◽  
A.P. Cowley

Numerous studies have been attempted to determine the stellar content of the nuclei of galaxies. In the case of elliptical galaxies observations show that there is a change in spectral type from later to earlier types correlated with a variation from high to low luminosity (e.g. Faber 1977). This has been interpreted for the most part as being due to differences in metal abundances in an old stellar population, although some recent studies suggest a variation in stellar age may be important as well (e.g. O’Connell 1980, Heckman 1980). The nuclear bulges of spiral galaxies also display a change from late to early spectral type along a sequence from high to low luminosity bulges. In this case, however, the assumption has almost universally been made that these differences are due to differences in age of the stellar population. In particular, most stellar models for the nuclear bulges of spiral galaxies have used solar neighbourhood metal- rich stars, and assumed that the strong hydrogen lines and weak metal lines in late-type spiral nuclei are due to the predominance of a very young main-sequence population rather than old metal-poor stars.


1998 ◽  
Vol 188 ◽  
pp. 53-56
Author(s):  
M. Loewenstein ◽  
R. F. Mushotzky

In elliptical galaxies, where most of the stars were formed at an early epoch, the total mass, spatial distribution, and relative abundances of metals are intimately connected to the galaxy formation process. Determinations of the hot interstellar medium metallicity from X-ray spectral analysis are more direct, less model-dependent, and more radially extensive than optical estimates based on broad-band colors or line indices, and provide a view into the nucleosynthetic histories of elliptical galaxies.


2011 ◽  
Vol 20 (10) ◽  
pp. 1901-1906
Author(s):  
LUCIO ANGELETTI ◽  
PIETRO GIANNONE

The R1/n law for the radial surface brightness of elliptical galaxies and the "Best Accretion Model" together with the "Concentration Model" have been combined in order to determine the mass and dynamical structure of largely-populated star systems. Families of models depending on four parameters have been used to fit the observed surface radial profiles of some spectro-photometric indices of a sample of eleven galaxies. We present the best agreements of the spectral index Mg2 with observations for three selected galaxies representative of the full sample. For them we have also computed the spatial distributions of the metal abundances, which are essential to achieve a population synthesis.


1988 ◽  
Vol 132 ◽  
pp. 525-530
Author(s):  
Raffaele G. Gratton

The use CCD detectors has allowed a major progress in abundance derivations for globular cluster stars in the last years. Abundances deduced from high dispersion spectra now correlates well with other abundance indicators. I discuss some problems concerning the derivation of accurate metal abundances for globular clusters using high dispersion spectra from both the old photographic and the most recent CCD data. The discrepant low abundances found by Cohen (1980), from photographic material for M71 giants, are found to be due to the use of too high microturbulences.


1999 ◽  
Vol 511 (2) ◽  
pp. 574-584 ◽  
Author(s):  
Ping He ◽  
Yuan‐Zhong Zhang

2020 ◽  
Vol 15 (S359) ◽  
pp. 173-174
Author(s):  
A. Cortesi ◽  
L. Coccato ◽  
M. L. Buzzo ◽  
K. Menéndez-Delmestre ◽  
T. Goncalves ◽  
...  

AbstractWe present the latest data release of the Planetary Nebulae Spectrograph Survey (PNS) of ten lenticular galaxies and two spiral galaxies. With this data set we are able to recover the galaxies’ kinematics out to several effective radii. We use a maximum likelihood method to decompose the disk and spheroid kinematics and we compare it with the kinematics of spiral and elliptical galaxies. We build the Tully- Fisher (TF) relation for these galaxies and we compare with data from the literature and simulations. We find that the disks of lenticular galaxies are hotter than the disks of spiral galaxies at low redshifts, but still dominated by rotation velocity. The mechanism responsible for the formation of these lenticular galaxies is neither major mergers, nor a gentle quenching driven by stripping or Active Galactic Nuclei (AGN) feedback.


1998 ◽  
Vol 11 (1) ◽  
pp. 86-89
Author(s):  
Ulysses J. Sofia

Abstract The well measured gas-phase abundances in the low halo suggest that this region of the Galaxy has total (gas plus dust) metal abundances which are close to those in the solar neighborhood. The gas-phase abundances in the halo are generally higher than those seen in the disk, however, this affect is likely due to the destruction of dust in the halo clouds. Observations of high velocity clouds (HVCs) in the halo suggest that these clouds have metal abundances which are substantially lower than those measured for the local interstellar medium. These determinations, however, are often of lower quality than those for the low halo because of uncertainties in the hydrogen abundances along the sightlines, in the incorporation of elements into dust, and in the partial ionization of the clouds.


Sign in / Sign up

Export Citation Format

Share Document