Solution of Fluid Dynamics Problems in Porous Media by the DRBEM

Author(s):  
Božidar Šarler
2013 ◽  
Vol 730 ◽  
pp. 1-4 ◽  
Author(s):  
J. J. L. Higdon

AbstractMultiphase flows in porous media represent fluid dynamics problems of great complexity involving a wide range of physical phenomena. These flows have attracted the attention of an impressive group of renowned researchers and have spawned a number of classic problems in fluid dynamics. These multiphase flows are perhaps best known for their importance in oil recovery from petroleum reservoirs, but they also find application in novel areas such as hydrofracturing for natural gas recovery. In a recent article, Zinchenko & Davis (J. Fluid Mech. 2013, vol. 725, pp. 611–663) present computational simulations that break new ground in the study of emulsions flowing through porous media. These simulations provide sufficient scale to capture the disordered motion and complex break-up patterns of individual droplets while providing sufficient statistical samples for estimating meaningful macroscopic properties of technical interest.


2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Karol Wiśniewski ◽  
Bartłomiej Tomasik ◽  
Zbigniew Tyfa ◽  
Piotr Reorowicz ◽  
Ernest Bobeff ◽  
...  

Background: The objective of our project was to identify a late recanalization predictor in ruptured intracranial aneurysms treated with coil embolization. This goal was achieved by means of a statistical analysis followed by a computational fluid dynamics (CFD) with porous media modelling approach. Porous media CFD simulated the hemodynamics within the aneurysmal dome after coiling. Methods: Firstly, a retrospective single center analysis of 66 aneurysmal subarachnoid hemorrhage patients was conducted. The authors assessed morphometric parameters, packing density, first coil volume packing density (1st VPD) and recanalization rate on digital subtraction angiograms (DSA). The effectiveness of initial endovascular treatment was visually determined using the modified Raymond–Roy classification directly after the embolization and in a 6- and 12-month follow-up DSA. In the next step, a comparison between porous media CFD analyses and our statistical results was performed. A geometry used during numerical simulations based on a patient-specific anatomy, where the aneurysm dome was modelled as a separate, porous domain. To evaluate hemodynamic changes, CFD was utilized for a control case (without any porosity) and for a wide range of porosities that resembled 1–30% of VPD. Numerical analyses were performed in Ansys CFX solver. Results: A multivariate analysis showed that 1st VPD affected the late recanalization rate (p < 0.001). Its value was significantly greater in all patients without recanalization (p < 0.001). Receiver operating characteristic curves governed by the univariate analysis showed that the model for late recanalization prediction based on 1st VPD (AUC 0.94 (95%CI: 0.86–1.00) is the most important predictor of late recanalization (p < 0.001). A cut-off point of 10.56% (sensitivity—0.722; specificity—0.979) was confirmed as optimal in a computational fluid dynamics analysis. The CFD results indicate that pressure at the aneurysm wall and residual flow volume (blood volume with mean fluid velocity > 0.01 m/s) within the aneurysmal dome tended to asymptotically decrease when VPD exceeded 10%. Conclusions: High 1st VPD decreases the late recanalization rate in ruptured intracranial aneurysms treated with coil embolization (according to our statistical results > 10.56%). We present an easy intraoperatively calculable predictor which has the potential to be used in clinical practice as a tip to improve clinical outcomes.


2013 ◽  
Vol 57 (3-4) ◽  
pp. 435-459 ◽  
Author(s):  
V.G. Ferreira ◽  
M.K. Kaibara ◽  
G.A.B. Lima ◽  
J.M. Silva ◽  
M.H. Sabatini ◽  
...  

Author(s):  
Perumandla Karunakar ◽  
Uddhaba Biswal ◽  
Snehashish Chakraverty

2000 ◽  
Vol 8 (4) ◽  
pp. 211-230 ◽  
Author(s):  
Philip W. Grant ◽  
Magne Haveraaen ◽  
Michael F. Webster

It has long been acknowledged that the development of scientific applications is in need of better software engineering practices. Here we contrast the difference between conventional software development of CFD codes with a method based on coordinate free mathematics. The former approach leads to programs where different aspects, such as the discretisation technique and the coordinate systems, can get entangled with the solver algorithm. The latter approach yields programs that segregate these concerns into fully independent software modules. Such considerations are important for the construction of numerical codes for practical problems. The two approaches are illustrated on the coating problem: the simulation of coating a wire with a polymer.


2008 ◽  
pp. 97-119
Author(s):  
Leopold kerget ◽  
Renata Jecl ◽  
Janja Kramer

Sign in / Sign up

Export Citation Format

Share Document