Wave Passage Through a String Having Multielement Inclusions with Partial Interior Dynamics

Author(s):  
A. D. Sergeyev ◽  
D. A. Sergeyev
Keyword(s):  
Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


2011 ◽  
Vol 16 (3) ◽  
pp. 364-374 ◽  
Author(s):  
Aman M. Mwafy ◽  
Oh-Sung Kwon ◽  
Amr Elnashai ◽  
Youssef M. A. Hashash

Author(s):  
B. Marks ◽  
A. Chowdhury ◽  
E. L. Petersen ◽  
M. S. Mannan
Keyword(s):  

2019 ◽  
Vol 5 (2) ◽  
pp. 9-14
Author(s):  
Анатолий Леонович ◽  
Anatoliy Leonovich ◽  
Цюган Цзун ◽  
Qiugang Zong ◽  
Даниил Козлов ◽  
...  

We study Alfvén waves generated in the magnetosphere during the passage of an interplanetary shock wave. After shock wave passage, the oscillations with typical Alfvén wave dispersion have been detected in spacecraft observations inside the magnetosphere. The most frequently observed oscillations are those with toroidal polarization; their spatial structure is described well by the field line resonance (FLR) theory. The oscillations with poloidal polarization are observed after shock wave passage as well. They cannot be generated by FLR and cannot result from instability of high-energy particle fluxes because no such fluxes were detected at that time. We discuss an alternative hypothesis suggesting that resonant Alfvén waves are excited by a secondary source: a highly localized pulse of fast magnetosonic waves, which is generated in the shock wave/plasmapause contact region. The spectrum of such a source contains oscillation harmonics capable of exciting both the toroidal and poloidal resonant Alfvén waves.


2013 ◽  
Vol 459 ◽  
pp. 608-613 ◽  
Author(s):  
Joanna M. Dulinska ◽  
Dorota Jasinska

The paper presents the analysis of the dynamic response of a steel pipeline with concrete coating to a real earthquakeregistered in central Poland in 2012. The peak ground acceleration of the shock was scaled up to maximal values predicted for this seismic zone. To represent theinelastic behavior of the material of the concrete coating under dynamic loading, the concrete damaged plasticity constitutive model was assumed.The modelallows to describeplastic strains and irreversible tensile and compression damage that occurs during the cracking process.For seismic analysis two models (uniform and non-uniform) of kinematic excitation were applied. In the modelof uniform excitation it was assumed that the motion of all supports was identical. Inthe model of non-uniform excitation, typical for long structures, the wave passage along the pipelinewith different velocities (500, 400 and 300 m/s) was taken into account. It occurred that for the model of uniform excitation the concrete material of the coating remained elastic with no tensile damage. For the model of non-uniform excitation, inelastic behaviour of the coating was observed. The plastic strain areas appeared above all supports. The tensile damage (cracking) wasalso noticed in these areas: the lower wave velocity was assumed, the greater area of concrete coating was affected by plastic strains and tensile damage (cracking). It was the consequence of the quasi-static effects which resulted from ground deformations imposed on the pipeline during the seismic shock.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Masoomeh Akbari ◽  
Mohammad Amin Hariri-Ardebili ◽  
Hasan Mirzabozorg

Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.


2015 ◽  
Vol 744-746 ◽  
pp. 884-889
Author(s):  
Dorota Jasinska ◽  
Joanna M. Dulinska ◽  
Pawel Boron

In the paper the influence of spatial variability of a seismic shock on an industrial steel hall was examined. Different models of seismic excitation were introduced. Firstly, a uniform seismic excitation model was applied, assuming identical motion of all supports of the hall. Then, a non-uniform excitation model was implemented. In that model subsequent points of the ground in the direction of wave propagation repeat the same motion with a certain time delay dependent on the wave velocity. Two direction of the wave passage were assumed: longitudinal (along the longer side of the hall) and transverse (along the shorter side of the hall). To guarantee proper nonlinear elasto-plastic behavior of the structure, the material parameters of the steel were determined experimentally. The dynamic analyses revealed that the response of the hall to the seismic shock was reported beyond the elastic range. Plastic effects appeared in some zones of the primary as well as the secondary structural members of the object, regardless of the excitation model. The model of non-uniform seismic excitation with transverse wave passage turned out to have the greatest impact on the dynamic response of the hall; the plastic strains obtained for that model were much greater than those obtained for other models. The transverse non-uniform excitation generated irreversible strains almost 3 times greater than the uniform excitation. The evolution of significant plastic effects was observed mainly for non-uniform excitations in the lower parts (girts and columns) of the hall, which were strongly affected by the different motions of the ground.


Author(s):  
Tomas Jimenez ◽  
Eric Houston ◽  
Nico Meyer

As most nuclear power stations in the US have surpassed their initial 40 years of operability, the industry is now challenged with maintaining safe operations and extending the operating life of structures, systems and components. The US Nuclear Regulatory Commission (NRC), Nuclear Energy Institute (NEI), and Electric Power Research Institute (EPRI) have identified safety related buried piping systems as particularly susceptible to degradation. These systems are required to maintain the structural factors of the ASME Construction Codes under pressure and piping loads, which includes seismic wave passage. This paper focuses on evaluation approaches for metallic buried piping that can be used to demonstrate that localized thinning meets the requirements of the Construction Code. The paper then addresses a non-metallic repair option using carbon fiber reinforced polymers (CFRP) as the new pressure boundary.


2015 ◽  
Vol 143 (10) ◽  
pp. 3996-4011 ◽  
Author(s):  
Carl J. Schreck

Abstract Convectively coupled atmospheric Kelvin waves are among the most prominent sources of synoptic-scale rainfall variability in the tropics, but large uncertainties surround their role in tropical cyclogenesis. This study identifies the modulation of tropical cyclones relative to the passage of a Kelvin wave’s peak rainfall (i.e., its crest) in each basin. Tropical cyclogenesis is generally inhibited for 3 days before the crest and enhanced for 3 days afterward. Composites of storms forming in the most favorable lags illustrate the dynamical impacts of the waves. In most basins, the tropical cyclone actually forms during the convectively suppressed phase of the wave. The 850-hPa equatorial westerly anomalies provide the cyclonic vorticity for the nascent storm, and 200-hPa easterly anomalies enhance the outflow. The wind anomalies persist at both levels longer than the Kelvin wave’s period and are often related to the Madden–Julian oscillation (MJO). The onset of these wind anomalies occurs with the Kelvin wave passage, while the MJO apparently establishes their duration. Many of the composites also show evidence of an easterly wave from which the tropical cyclone develops. The composite easterly wave amplifies or even initiates within the Kelvin wave crest. These results show the importance of Kelvin waves interacting with the MJO and easterly waves during tropical cyclogenesis. Given that Kelvin waves often circumnavigate the globe, these results show promise for long-range forecasting of tropical cyclogenesis in all basins.


Sign in / Sign up

Export Citation Format

Share Document