scholarly journals The Late Heavy Bombardment in the Inner Solar System: Is There Any Connection to Kuiper Belt Objects?

Author(s):  
Christian Koeberl
2010 ◽  
Vol 6 (S269) ◽  
pp. 250-253
Author(s):  
Zhanna Pozhalova ◽  
Dmitrij Lupishko

AbstractBy the beginning of 2010 the total number of natural satellites and multiple systems in the Solar System was equal to 350, including: 168 satellites of large planets, 119 multiple asteroids (including main-belt and near-Earth asteroids, Mars-crossers and Jupiter Trojan asteroids) and 63 multiple transneptunian and Kuiper-belt objects. Meanwhile, we cannot count precisely how many moons in total have been discovered to date due to the deficiency of accepted definitions.


2011 ◽  
Vol 13 (35) ◽  
pp. 15747
Author(s):  
Ralf I. Kaiser ◽  
Weijun Zheng ◽  
Yoshihiro Osamura ◽  
Agnes H. H. Chang

2021 ◽  
Author(s):  
Anikó Farkas-Takacs ◽  
Csaba Kiss ◽  
Sándor Góbi ◽  
Ákos Keresztúri

2009 ◽  
Vol 5 (S263) ◽  
pp. 192-196 ◽  
Author(s):  
Pedro Lacerda

AbstractKuiper belt object 136108 Haumea is one of the most fascinating bodies in our solar system. Approximately 2000 × 1600 × 1000 km in size, it is one of the largest Kuiper belt objects (KBOs) and an unusually elongated one for its size. The shape of Haumea is the result of rotational deformation due to its extremely short 3.9-hour rotation period. Unlike other 1000 km-scale KBOs which are coated in methane ice the surface of Haumea is covered in almost pure H2O-ice. The bulk density of Haumea, estimated around 2.6 g cm−3, suggests a more rocky interior composition, different from the H2O-ice surface. Recently, Haumea has become the second KBO after Pluto to show observable signs of surface features. A region darker and redder than the average surface of Haumea has been identified, the composition and origin of which remain unknown. I discuss this recent finding and what it may tell us about Haumea.


2002 ◽  
Vol 12 ◽  
pp. 243-244
Author(s):  
Ştefan Berinde

Nowadays many attempts are made to establish a qualitative and a quantitative connection between Kuiper Belt Population and Jupiter Family Comets. Basically, this can be thought as a diffusion process throughout the outer Solar System due to multiple close encounters with the giant planets. But, following the path of a body in such a process is not an easy task to be approached analytically nor numerically, because the motion is very chaotic and spread over a long time. A statistical approach seems to be a reasonable way and is the purpose of this paper.


2020 ◽  
Vol 4 (10) ◽  
pp. 930-939 ◽  
Author(s):  
Carey Lisse ◽  
James Bauer ◽  
Dale Cruikshank ◽  
Josh Emery ◽  
Yanga Fernández ◽  
...  

2019 ◽  
Vol 490 (2) ◽  
pp. 2421-2429 ◽  
Author(s):  
A R Poppe

ABSTRACT Interplanetary dust grains originate from a variety of source bodies, including comets, asteroids, and Edgeworth–Kuiper belt objects. Centaurs, generally defined as those objects with orbits that cross the outer planets, have occasionally been observed to exhibit cometary-like outgassing at distances beyond Jupiter, implying that they may be an important source of dust grains in the outer Solar system. Here, we use an interplanetary dust grain dynamics model to study the behaviour and equilibrium distribution of Centaur-emitted interplanetary dust grains. We focus on the five Centaurs with the highest current mass-loss rates: 29P/Schwassmann-Wachmann 1, 166P/2001 T4, 174P/Echeclus, C/2001 M10, and P/2004 A1, which together comprise 98 per cent of the current mass loss from all Centaurs. Our simulations show that Centaur-emitted dust grains with radii s < 2 μm have median lifetimes consistent with Poynting–Robertson (P–R) drag lifetimes, while grains with radii s > 2 μm have median lifetimes much shorter than their P–R drag lifetimes, suggesting that dynamical interactions with the outer planets are effective in scattering larger grains, in analogy to the relatively short lifetimes of Centaurs themselves. Equilibrium density distributions of grains emitted from specific Centaurs show a variety of structure including local maxima in the outer Solar system and azimuthal asymmetries, depending on the orbital elements of the parent Centaur. Finally, we compare the total Centaur interplanetary dust density to dust produced from Edgeworth–Kuiper belt objects, Jupiter-family comets, and Oort cloud comets, and conclude that Centaur-emitted dust may be an important component between 5 and 15 au, contributing approximately 25 per cent of the local interplanetary dust density at Saturn.


Sign in / Sign up

Export Citation Format

Share Document