scholarly journals THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM

2010 ◽  
Vol 139 (4) ◽  
pp. 1499-1514 ◽  
Author(s):  
F. B. Bianco ◽  
Z.-W. Zhang ◽  
M. J. Lehner ◽  
S. Mondal ◽  
S.-K. King ◽  
...  
2002 ◽  
Vol 12 ◽  
pp. 243-244
Author(s):  
Ştefan Berinde

Nowadays many attempts are made to establish a qualitative and a quantitative connection between Kuiper Belt Population and Jupiter Family Comets. Basically, this can be thought as a diffusion process throughout the outer Solar System due to multiple close encounters with the giant planets. But, following the path of a body in such a process is not an easy task to be approached analytically nor numerically, because the motion is very chaotic and spread over a long time. A statistical approach seems to be a reasonable way and is the purpose of this paper.


2019 ◽  
Vol 490 (2) ◽  
pp. 2421-2429 ◽  
Author(s):  
A R Poppe

ABSTRACT Interplanetary dust grains originate from a variety of source bodies, including comets, asteroids, and Edgeworth–Kuiper belt objects. Centaurs, generally defined as those objects with orbits that cross the outer planets, have occasionally been observed to exhibit cometary-like outgassing at distances beyond Jupiter, implying that they may be an important source of dust grains in the outer Solar system. Here, we use an interplanetary dust grain dynamics model to study the behaviour and equilibrium distribution of Centaur-emitted interplanetary dust grains. We focus on the five Centaurs with the highest current mass-loss rates: 29P/Schwassmann-Wachmann 1, 166P/2001 T4, 174P/Echeclus, C/2001 M10, and P/2004 A1, which together comprise 98 per cent of the current mass loss from all Centaurs. Our simulations show that Centaur-emitted dust grains with radii s < 2 μm have median lifetimes consistent with Poynting–Robertson (P–R) drag lifetimes, while grains with radii s > 2 μm have median lifetimes much shorter than their P–R drag lifetimes, suggesting that dynamical interactions with the outer planets are effective in scattering larger grains, in analogy to the relatively short lifetimes of Centaurs themselves. Equilibrium density distributions of grains emitted from specific Centaurs show a variety of structure including local maxima in the outer Solar system and azimuthal asymmetries, depending on the orbital elements of the parent Centaur. Finally, we compare the total Centaur interplanetary dust density to dust produced from Edgeworth–Kuiper belt objects, Jupiter-family comets, and Oort cloud comets, and conclude that Centaur-emitted dust may be an important component between 5 and 15 au, contributing approximately 25 per cent of the local interplanetary dust density at Saturn.


2001 ◽  
Vol 183 ◽  
pp. 261-262
Author(s):  
Cheng-Pin Chen ◽  
Ing-Guey Jiang

AbstractWe study the possible humps or deviation from the single-power law for the size distribution of the Kuiper Belt Objects (KBOs). Both the current observational data and theoretical simulations show evidence of such humps. We conclude that this is an imprint of the depletion of the outer Solar System in the Kuiper Belt region.


2021 ◽  
Vol 03 (01) ◽  
pp. 85-87
Author(s):  
Türkanə Mirzəli qızı Əliyeva ◽  
◽  
Vəfa Əjdər qızı Qafarova ◽  

The article provides extensive information on the formation, evolution and structure of the solar system. It also discusses the planets of the solar system and the dwarf planets. Its noted that the Kuiper objects are the celestial bodies which belongs to the solar system. NASA's New Horizons spacecraft is currently helps studying four objects in the Kuiper belt. There is also talked about TTauri type stars. The article discusses the future transformation of the Sun from a Red Giant to a White Dwarf. Key words: Kuiper Belt, T Tauri Star, Dwarf Planets, Planet X


1994 ◽  
Vol 160 ◽  
pp. 31-44
Author(s):  
Jane Luu

The existence of a belt of comets in the outer solar system (the “Kuiper belt”) has been postulated for a variety of reasons, including the need for a source for the short-period comets. The existence of the belt seems supported by the discoveries of the trans-Neptunian objects 1992 QB1, 1993 FW, 1993 RO, 1993 RP, 1993 SB, and 1993 SC. If these objects are members of the Kuiper belt, crude lower limits on the belt population can be established from the discoveries. The Kuiper belt comets are likely to be primordial remnants of the disk from which the solar system accreted. According to the current theories of cometary nucleus evolution, these objects are expected to possess mantles (“irradiation mantles”) which are different from mantles of comets which have been heated to the point of sublimation (“rubble mantles”). Kuiper belt comets on their way to short-period comet orbits may exist among the Centaur objects.


2008 ◽  
Vol 4 (S251) ◽  
pp. 285-292 ◽  
Author(s):  
Dale P. Cruikshank

AbstractThe reflected spectral energy distribution of low-albedo, red-colored, airless bodies in the outer Solar System (planetary satellites, Centaur objects, Kuiper Belt objects, bare comet nuclei) can be modeled with spectral models that incorporate the optical properties of refractory complex organic materials synthesized in the laboratory and called tholins. These materials are strongly colored and impart their color properties to the models. The colors of the bodies cannot be matched with plausible minerals, ices, or metals. Iapetus, a satellite of Saturn, is one such red-colored body that is well matched with tholin-rich models. Detection of aromatic and aliphatic hydrocarbons on Iapetus by the Cassini spacecraft, and the presence of these hydrocarbons in the tholins, is taken as evidence for the widespread presence of solid organic complexes aromatic and aliphatic units on many bodies in the outer Solar System. These organic complexes may be compositionally similar to the insoluble organic matter in some classes of the carbonaceous meteorites, and thus may ultimately derive from the organic matter in the interstellar medium.


2010 ◽  
Vol 6 (S269) ◽  
pp. 250-253
Author(s):  
Zhanna Pozhalova ◽  
Dmitrij Lupishko

AbstractBy the beginning of 2010 the total number of natural satellites and multiple systems in the Solar System was equal to 350, including: 168 satellites of large planets, 119 multiple asteroids (including main-belt and near-Earth asteroids, Mars-crossers and Jupiter Trojan asteroids) and 63 multiple transneptunian and Kuiper-belt objects. Meanwhile, we cannot count precisely how many moons in total have been discovered to date due to the deficiency of accepted definitions.


2011 ◽  
Vol 13 (35) ◽  
pp. 15747
Author(s):  
Ralf I. Kaiser ◽  
Weijun Zheng ◽  
Yoshihiro Osamura ◽  
Agnes H. H. Chang

Sign in / Sign up

Export Citation Format

Share Document