A Model-Based Approach for the Recovery of Forest Attributes Using Airborne Laser Scanning Data

Author(s):  
Lauri Mehtätalo ◽  
Jukka Nyblom ◽  
Anni Virolainen
2011 ◽  
Vol 41 (1) ◽  
pp. 96-107 ◽  
Author(s):  
Göran Ståhl ◽  
Sören Holm ◽  
Timothy G. Gregoire ◽  
Terje Gobakken ◽  
Erik Næsset ◽  
...  

In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) data sets from Hedmark County, Norway, where the model error proportion of the total variance was found to be large for both scanning (airborne laser scanning) and profiling LiDAR when biomass was estimated. With profiling LiDAR, the model error variance component for the entire county was as large as 71% whereas for airborne laser scanning, it was 43% of the total variance. Partly, this reflects the better accuracy of the pixel-based regression models estimated from scanner data as compared with the models estimated from profiler data. The framework proposed in our study can be applied in all types of sample surveys where model-based predictions are made at the level of individual sampling units. Especially, it should be useful in cases where model-assisted inference cannot be applied due to the lack of a probability sample from the target population or due to problems of correctly matching observations of auxiliary and target variables.


2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


2020 ◽  
Vol 12 (9) ◽  
pp. 1446 ◽  
Author(s):  
Krystian Kozioł ◽  
Kamil Maciuk

The idea to verify the height of the highest peaks (summits) in the Crown of Polish Mountains arose after analyzing sources regarding the date and method of measuring the height of these mountain peaks. Our investigations revealed that this type of material is not usually available, and the first mention of height values is most often noted in the inter-war period, and occasionally before WWI (when Poland did not exist as an independent state); most of these values are still in use to this day. The problem of accurate measurement of the height of mountain peaks concerns not only the peaks analyzed by the authors, but also almost all mountain peaks worldwide. Therefore, as part of this work, several trips were organized to the highest peaks of several dozen mountain ranges in the territory of Poland. Measurement was made using a precise geodetic GNSS receiver an accuracy of within 10 cm and a DTM model based on ALS (airborne laser scanning). The results showed that commonly published heights can differ by up to several meters from the actual ones. The most important element of this work consists of the establishment of new measurements of the heights of the highest peaks of all mountain ranges in Poland, which may result in an alteration of the officially recorded heights based on this article. Apart from verification of these heights, this work also aimed to address the issue of the heights of all characteristic objects whose heights must be verified by using modern satellite techniques.


2021 ◽  
Vol 6 (1-2) ◽  
pp. 159-176
Author(s):  
Filip Prekop ◽  
Petr Krištuf

This paper presents a new hillfort site which is situated on top of „Čerťák“ Hill (651 m n. m.), Sovolusky municipality, Karlovy Vary district. It has been identified with the help of a digital terrain model based on Airborne Laser Scanning (LiDAR). Two separate lines of stone ramparts have been confirmed on top of the Čerťák Hill, formed by a significant right bank meander in the upper course of the river Střela. The inner area reaches 1.4 ha and the external enclosed area spreads to 2.3 ha. Subsequent field research yielded a collection of more than 500 pottery fragments from the Late Hallstatt period. The dispersion of finds shows relatively intensive settlement. The paper also discusses other sites in the surrounding region which date to the same period. The Hallstatt settlement seems to have been a structurally connected complex in the presented area.


2014 ◽  
Vol 44 (11) ◽  
pp. 1303-1311 ◽  
Author(s):  
Piermaria Corona ◽  
Lorenzo Fattorini ◽  
Sara Franceschi ◽  
Gianfranco Scrinzi ◽  
Chiara Torresan

Forest compartments are usually delineated according to artificial or natural boundaries and usually include portions of different strata. While volume estimation of each stratum can be performed from field plots located within each stratum, volume estimation in portions of the stratum may be problematic owing to the small number (or even the absence) of plots falling in those portions. If upper canopy heights from airborne laser scanning are available at the pixel level for the whole survey area, these data are used as auxiliary information. A ratio model presuming a proportional relationship between transformed heights (e.g., power of heights) and volumes at the pixel level is adopted to guide estimation. From this model, the volume within any portion of the survey area is estimated as the proportionality factor estimate multiplied by the total of transformed heights in that portion. This estimator is considered from the model-based, design-based, and hybrid perspectives. Variances and their estimators are derived under the three approaches together with the corresponding confidence intervals. The volume estimator and the variance estimators are checked from the design-based point of view by a simulation study performed on a real forest in northwestern Italy. An application to a public forest estate in the same zone is performed.


2016 ◽  
Vol 56 (1) ◽  
pp. 013101 ◽  
Author(s):  
Umut Gunes Sefercik ◽  
Gurcan Buyuksalih ◽  
Karsten Jacobsen ◽  
Mehmet Alkan

2015 ◽  
Vol 45 (11) ◽  
pp. 1498-1513 ◽  
Author(s):  
Joanne C. White ◽  
John T.T.R. Arnett ◽  
Michael A. Wulder ◽  
Piotr Tompalski ◽  
Nicholas C. Coops

In this study, we explored the consequences of using leaf-on and leaf-off airborne laser scanning (ALS) data on area-based model outcomes in a lodgepole pine (Pinus contorta var. latifolia Engelm.) dominated forest in the foothills of the Rocky Mountains in Alberta, Canada. We considered eight forest attributes: top height, mean height, Lorey’s mean height, basal area, quadratic mean diameter, merchantable volume, total volume, and total aboveground biomass. We used 787 ground plots for model development, stratified by ALS acquisition conditions (leaf-on or leaf-off) and dominant forest type (coniferous or deciduous). We also generated pooled models that combined leaf-on and leaf-off ALS data and generic models that combined plot data for all forest types. We evaluated differences in ALS metrics and leaf-on and leaf-off model outcomes, as well as the impacts of pooling leaf-on and leaf-off ALS data, creating generic models, and of applying leaf-on models to leaf-off data (and vice versa). In general, leaf-off and leaf-on ALS metrics were not significantly different (p < 0.05), except for the 5th percentile of height (coniferous) and canopy density metrics (deciduous). Overall, coniferous leaf-on and leaf-off models were comparable, with differences in relative root mean square error (RMSE) and bias of <2% for all attributes except volume, which differed by <4%. RMSE and bias for deciduous leaf-on and leaf-off models for height attributes and quadratic mean diameter differed by <2%, whereas models for volume and biomass differed by <7%. These results affirm that leaf-off data can be used in an area-based approach to estimate forest attributes for both coniferous and deciduous forest types. Relative RMSE and bias for pooled models (combining leaf-on and leaf-off ALS data) differed by <2% relative to leaf-on and leaf-off models, suggesting that in the forests studied herein, combining leaf-on and leaf-off data in an area-based approach does not adversely impact model outcomes. Generic models that did not account for forest type had large errors for volume and biomass (e.g., the relative RMSE for merchantable volume was twice as large as forest type specific models). Likewise, the mixing of leaf-on models with leaf-off data and vice versa resulted in large RMSE and bias for both forest types, and therefore mixing of models and data types should be avoided.


Sign in / Sign up

Export Citation Format

Share Document