scholarly journals Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories

2019 ◽  
Vol 226 ◽  
pp. 26-37 ◽  
Author(s):  
Lennart Noordermeer ◽  
Ole Martin Bollandsås ◽  
Hans Ole Ørka ◽  
Erik Næsset ◽  
Terje Gobakken
2020 ◽  
Vol 12 (11) ◽  
pp. 1808 ◽  
Author(s):  
Miłosz Mielcarek ◽  
Agnieszka Kamińska ◽  
Krzysztof Stereńczak

The rapid developments in the field of digital aerial photogrammetry (DAP) in recent years have increased interest in the application of DAP data for extracting three-dimensional (3D) models of forest canopies. This technology, however, still requires further investigation to confirm its reliability in estimating forest attributes in complex forest conditions. The main purpose of this study was to evaluate the accuracy of tree height estimation based on a crown height model (CHM) generated from the difference between a DAP-derived digital surface model (DSM) and an airborne laser scanning (ALS)-derived digital terrain model (DTM). The tree heights determined based on the DAP-CHM were compared with ground-based measurements and heights obtained using ALS data only (ALS-CHM). Moreover, tree- and stand-related factors were examined to evaluate the potential influence on the obtained discrepancies between ALS- and DAP-derived heights. The obtained results indicate that the differences between the means of field-measured heights and DAP-derived heights were statistically significant. The root mean square error (RMSE) calculated in the comparison of field heights and DAP-derived heights was 1.68 m (7.34%). The results obtained for the CHM generated using only ALS data produced slightly lower errors, with RMSE = 1.25 m (5.46%) on average. Both ALS and DAP displayed the tendency to underestimate tree heights compared to those measured in the field; however, DAP produced a higher bias (1.26 m) than ALS (0.88 m). Nevertheless, DAP heights were highly correlated with the heights measured in the field (R2 = 0.95) and ALS-derived heights (R2 = 0.97). Tree species and height difference (the difference between the reference tree height and mean tree height in a sample plot) had the greatest influence on the differences between ALS- and DAP-derived heights. Our study confirms that a CHM computed based on the difference between a DAP-derived DSM and an ALS-derived DTM can be successfully used to measure the height of trees in the upper canopy layer.


2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


Silva Fennica ◽  
2018 ◽  
Vol 52 (1) ◽  
Author(s):  
Annika Kangas ◽  
Terje Gobakken ◽  
Stefano Puliti ◽  
Marius Hauglin ◽  
Erik Naesset

Author(s):  
Gintautas MOZGERIS ◽  
Ina BIKUVIENĖ ◽  
Donatas JONIKAVICIUS

The aim of this study was to test the usability of airborne laser scanning (ALS) data for stand-wise forest inventories in Lithuania based on operational approaches from Nordic countries, taking into account Lithuanian forest conditions and requirements for stand-wise inventories, such as more complex forests, unified requirements for inventory of all forests, i.e. no matter the ownership, availability of supporting material from previous inventories and high accuracy requirements for total volume estimation. Test area in central part of Lithuania (area 2674 ha) was scanned using target point density 1 m-2 followed by measurements of 440 circular field plots (area 100–500 m2). Detailed information on 22 final felling areas with all trees callipered (total area 42.7 ha) was made available to represent forest at mature age. Updated information from conventional stand-wise inventory was made available for the whole study area, too. A two phase sampling with nonparametric Most Similar Neighbor estimator was used to predict point-wise forest characteristics. Total volume of the stand per 1 ha was predicted with an root mean square error of 18.6 %, basal area – 17.7 %, mean diameter – 13.6 %, mean height – 7.9 % and number of tree – 42.8 % at plot-level with practically no significant bias. However, the relative root mean square errors increased 2–4 times when trying to predict forest characteristics by three major groups of tree species – pine, spruce and all deciduous trees taken together. Main conclusion of the study was that accuracy of predicting volume using ALS data decreased notably when targeting forest characteristics by three major groups of tree species.


Author(s):  
Douglas K. Bolton ◽  
Joanne C. White ◽  
Michael A. Wulder ◽  
Nicholas C. Coops ◽  
Txomin Hermosilla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document