Distributed Medium Access for Camera Sensor Networks: Theory and Practice

Author(s):  
Hojin Lee ◽  
Donggyu Yun ◽  
Yung Yi
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1827
Author(s):  
Piotr Cofta ◽  
Kostas Karatzas ◽  
Cezary Orłowski

The growing popularity of inexpensive IoT (Internet of Things) sensor networks makes their uncertainty an important aspect of their adoption. The uncertainty determines their fitness for purpose, their perceived quality and the usefulness of information they provide. Nevertheless, neither the theory nor the industrial practice of uncertainty offer a coherent answer on how to address uncertainty of networks of this type and their components. The primary objective of this paper is to facilitate the discussion of what progress should be made regarding the theory and the practice of uncertainty of IoT sensor networks to satisfy current needs. This paper provides a structured overview of uncertainty, specifically focusing on IoT sensor networks. It positions IoT sensor networks as contrasted with professional measurement and control networks and presents their conceptual sociotechnical reference model. The reference model advises on the taxonomy of uncertainty proposed in this paper that demonstrates semantic differences between various views on uncertainty. This model also allows for identifying key challenges that should be addressed to improve the theory and practice of uncertainty in IoT sensor networks.


Author(s):  
Sven-Jannik Wohnert ◽  
Kai Hendrik Wohnert ◽  
Eldar Almamedov ◽  
Volker Skwarek

2016 ◽  
Vol 21 (3) ◽  
pp. 179 ◽  
Author(s):  
Biaofei Xu ◽  
Yuqing Zhu ◽  
Deying Li ◽  
Donghyun Kim ◽  
Weili Wu

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2284
Author(s):  
Ibrahim B. Alhassan ◽  
Paul D. Mitchell

Medium access control (MAC) is one of the key requirements in underwater acoustic sensor networks (UASNs). For a MAC protocol to provide its basic function of efficient sharing of channel access, the highly dynamic underwater environment demands MAC protocols to be adaptive as well. Q-learning is one of the promising techniques employed in intelligent MAC protocol solutions, however, due to the long propagation delay, the performance of this approach is severely limited by reliance on an explicit reward signal to function. In this paper, we propose a restructured and a modified two stage Q-learning process to extract an implicit reward signal for a novel MAC protocol: Packet flow ALOHA with Q-learning (ALOHA-QUPAF). Based on a simulated pipeline monitoring chain network, results show that the protocol outperforms both ALOHA-Q and framed ALOHA by at least 13% and 148% in all simulated scenarios, respectively.


Sign in / Sign up

Export Citation Format

Share Document