Multiplicative Viscoelastic-Viscoplastic Damage-Healing Model for Asphalt-Concrete Materials

Author(s):  
Romain Balieu ◽  
Nicole Kringos ◽  
Feng Chen ◽  
Enrique Córdoba
2007 ◽  
Vol 8 (2) ◽  
pp. 239-255
Author(s):  
Dang-Truc Nguyen ◽  
Boumediene Nedjar ◽  
Philippe Philippe

Author(s):  
Erdem Coleri ◽  
John T. Harvey

Laboratory tests are conducted with asphalt concrete materials to determine the expected in-situ performance. In addition, laboratory test results are commonly used in mechanistic-empirical design methods for material characterization to improve the predictive accuracy of the models. However, the effectiveness of laboratory tests in characterizing the long-term performance of asphalt concrete materials needs to be validated to be able to use the results for pavement design and long-term performance prediction. Inaccurate performance characterization and prediction can directly affect the decision-making process for pavement maintenance, rehabilitation, and reconstruction and result in unexpected early failures in the field. The major objective of this study is to determine the impact of using laboratory-measured asphalt stiffness on the prediction accuracy of mechanistic-empirical models. In addition, the effect of using linear-elastic modeling assumptions (layered elastic theory) and neglecting the nonlinearity of pavement response at high load levels (and/or at high strain levels for weaker structures) on the predicted rutting performance was determined. In this study, the effectiveness of the use of laboratory asphalt stiffness tests for in-situ asphalt stiffness characterization was determined by comparing the rutting performance predicted using laboratory-measured stiffness to rutting predicted using strain-gauge backcalculated stiffness. It was determined that laboratory tests are able to characterize the in-situ stiffness characteristics of the asphalt mix used in this study and the stiffness characterization process suggested in this study can provide reliable rutting performance predictions. Results of this study are only applicable to tested rubberized asphalt concrete mixtures.


Author(s):  
Haimeng Zhang ◽  
De-Guang Shang ◽  
Xiao-Dong Liu ◽  
Yu Zhang

In this investigation, it is found that the generated elastic stress during the unconstraint vibration treatment process can act as the dislocation driving stress on the dislocation in the micro-scale. When the sum of the dislocation driving stress, the image stress and the back stress exceeds the motion resistance of the dislocations in a pile-up, the dislocations begin to reverse back, and the pile-up disappear. Based on this principle, a fatigue damage-healing model under unconstraint vibration condition was proposed. The verified results showed that the damaged copper film can be effectively healed by the vibration guided by the model calculation.


1999 ◽  
Vol 15 (4) ◽  
pp. 177-184
Author(s):  
Ming-Lou Liu

AbstractThe stress-strain relationship of the sand and asphalt concrete materials is one of the most important research subjects in the past, and many conctitutive laws for these materials have been proposed in the last two decades. In this study, the Vermeer plasticity model is modified and used to predict the behavior of the sand and asphalt concrete materials under different stress path conditions. The results show that the predictions and test results agree well under different stress path conditions. However, the orignal Vermeer model can not predict the stress-strain behavior of the asphalt concrete. Finally, the modified Vermeer plasticity model is incorporated with the pavement rutting model to predict the rut depth of pavement structure under traffic loadings.


2014 ◽  
Vol 63 ◽  
pp. 145-153 ◽  
Author(s):  
Xiao-Dong Liu ◽  
De-Guang Shang ◽  
Li-Hong Zhang ◽  
Tao Chen ◽  
Y.B. Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document