Analysis of the Mechanic Behavior and Rutting of Asphalt Concrete Using a Sand Model

1999 ◽  
Vol 15 (4) ◽  
pp. 177-184
Author(s):  
Ming-Lou Liu

AbstractThe stress-strain relationship of the sand and asphalt concrete materials is one of the most important research subjects in the past, and many conctitutive laws for these materials have been proposed in the last two decades. In this study, the Vermeer plasticity model is modified and used to predict the behavior of the sand and asphalt concrete materials under different stress path conditions. The results show that the predictions and test results agree well under different stress path conditions. However, the orignal Vermeer model can not predict the stress-strain behavior of the asphalt concrete. Finally, the modified Vermeer plasticity model is incorporated with the pavement rutting model to predict the rut depth of pavement structure under traffic loadings.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Keun-Hyeok Yang ◽  
Ju-Hyun Mun ◽  
Hey-Zoo Hwang

This study examined the stress-strain behavior of 10 calcium hydroxide (Ca(OH)2)-activated Hwangtoh concrete mixes. The volumetric ratio of the coarse aggregate (Vagg) and the water-to-binder (W/B) ratio were selected as the main test variables. TwoW/Bratios (25% and 40%) were used and the value ofVaggvaried between 0% and 40.0%, and 0% and 46.5% forW/Bratios of 25% and 40%, respectively. The test results demonstrated that the slope of the ascending branch of the stress-strain curve of Ca(OH)2-activated Hwangtoh concrete was smaller, and it displayed a steeper drop in stress in the descending branch, compared with those of ordinary Portland cement (OPC) concrete with the same compressive strength. This trend was more pronounced with the increase in theW/Bratio and decrease inVagg. Based on the experimental observations, a simple and rational stress-strain model was established mathematically. Furthermore, the modulus of elasticity and strain at peak stress of the Ca(OH)2-activated Hwangtoh concrete were formulated as a function of its compressive strength andVagg. The proposed stress-strain model predicted the actual behavior accurately, whereas the previous models formulated using OPC concrete data were limited in their applicability to Ca(OH)2-activated Hwangtoh concrete.


2014 ◽  
Vol 977 ◽  
pp. 116-119 ◽  
Author(s):  
Yu Liang Yang ◽  
Liang Qiao ◽  
Cong Wang ◽  
Fei Lu ◽  
Xiao Hui Kang

For the effect of environmental temperature on the rubber material stress-strain relationships, rubber tensile specimens, compression specimens and shear specimens were made. Through the electronic universal testing machine Instron 5500R, the stress-strain curves of three kinds of specimens at different temperatures were obtained. The test results showed that the stress-strain relationship of rubber material was typically nonlinear. As the temperature increased, the elastic modulus of rubber material decreased.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
N. K. Sharma ◽  
M. D. Sarker ◽  
Saman Naghieh ◽  
Daniel X. B. Chen

Bone is a complex material that exhibits an amount of plasticity before bone fracture takes place, where the nonlinear relationship between stress and strain is of importance to understand the mechanism behind the fracture. This brief presents our study on the examination of the stress–strain relationship of bovine femoral cortical bone and the relationship representation by employing the Ramberg–Osgood (R–O) equation. Samples were taken and prepared from different locations (upper, middle, and lower) of bone diaphysis and were then subjected to the uniaxial tensile tests under longitudinal and transverse loading conditions, respectively. The stress–strain curves obtained from tests were analyzed via linear regression analysis based on the R–O equation. Our results illustrated that the R–O equation is appropriate to describe the nonlinear stress–strain behavior of cortical bone, while the values of equation parameters vary with the sample locations (upper, middle, and lower) and loading conditions (longitudinal and transverse).


2013 ◽  
Vol 838-841 ◽  
pp. 47-52
Author(s):  
Fu Yi ◽  
Hong Yu Wang

In order to systemic study the normalized stress-strain relationship behavior of Yingkou clay. By the consolidated undrained triaxial sherar test of Yingkou clay, obtaining that stress-strain relationship is strain hardening under different confining pressures.A kind of cementation structure in the soil directly affects soft soil strength.And the paper contrast four kinds of normalized factors to study stress-strain characteristics,which are confining pressurethe average consolidation pressureand the ultimate value of principal stress.The results indicate that the normalized degree is more accurate when used value of principal stress and as normalized factor. Meanwhile the normalized stress-strain relationship of Yingkou clay under consolidated undrained condition is established,which can well predict the stress-strain relationship under different confining pressure.


Author(s):  
Fuzhang Zhao ◽  
Jim S. J. Chen ◽  
Andrew G. Blagg ◽  
Kenneth B. Margulies

An integrated computational-experimental method was developed to characterize the global nonlinear elastic stress-strain behavior of a beating rat heart. This method combines finite element (FE) simulation with the experimental end-diastolic cavity pressure- balloon volume relationship of left ventricle (LV) to characterize the deformation resistance of a beating heart. In the FE simulations, the hyperelastic Ogden strain energy potential was used and geometric nonlinearity was also considered. The elastic moduli for the ex-vivo rat heart obtained through the study vary from 0.003 to 0.577 MPa.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5838-5843
Author(s):  
BO HAN ◽  
HANGZHOU LI ◽  
HONG-JIAN LIAO ◽  
ZHENGHUA XIAO

To investigate the change of loess stress state, a series of triaxial shear tests were performed on normal consolidation and over consolidation loess. From the test results, the stress-strain relationships of loess were obtained and discussed. Based on unified strength theory, the statistical damage constitutive equation was obtained under triaxial stress state assuming distribution statistical probability of micro-units strength. Then the proposed formulation was adopted to study on stress-strain constitutive relationships of loess and to simulate consolidation undrained triaxial test and consolidation drained triaxial test for normal consolidated and over-consolidated specimens. Compared between experimental and theoretical results, it was shown that the proposed constitutive model can well describe stress-strain relationship of loess, whatever the characteristic of strain softening or stain hardening.


2020 ◽  
Vol 14 (1) ◽  
pp. 45-60
Author(s):  
Yashinta Yashinta ◽  
Dwi Hurriyati

This study aims to determine the relationship of loneliness with problematic internet use on boarding students on Silaberanti street in Siantan jaya Opposite Ulu 1 Palembang city. Research subjects numbered 220 people using random sampling methods. Data was collected using a 60 item problematic internet use scale and a 60 item loneliness. Realibility is generated on scale of problematic internet use of 0,955 and loneliness of 0,946.Hypothesis testing uses product moment correlation analysis techniques. Hypothesis test results showed a positive relationshif between loneliness with problematic internet use on boarding students on Silaberanti street in Siantan jaya Opposite Ulu 1 Palembang city r= 0,684 with a significance level of 0,000 (p<0,01). Loneliness in this study made an effective contribution of 46,8% to problematic internet use which can be seen from the coefficient of determination (r²) that is equel to 0,468.


2003 ◽  
Vol 18 (9) ◽  
pp. 2068-2078 ◽  
Author(s):  
A. DiCarlo ◽  
H. T. Y. Yang ◽  
S. Chandrasekar

A method for determining the stress–strain relationship of a material from hardness values H obtained from cone indentation tests with various apical angles is presented. The materials studied were assumed to exhibit power-law hardening. As a result, the properties of importance are the Young's modulus E, yield strength Y, and the work-hardening exponent n. Previous work [W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992)] showed that E can be determined from initial force–displacement data collected while unloading the indenter from the material. Consequently, the properties that need to be determined are Y and n. Dimensional analysis was used to generalize H/E so that it was a function of Y/E and n [Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999); Philos. Mag. Lett. 77, 39 (1998)]. A parametric study of Y/E and n was conducted using the finite element method to model material behavior. Regression analysis was used to correlate the H/E findings from the simulations to Y/E and n. With the a priori knowledge of E, this correlation was used to estimate Y and n.


2004 ◽  
Vol 274-276 ◽  
pp. 241-246 ◽  
Author(s):  
Bo Han ◽  
Hong Jian Liao ◽  
Wuchuan Pu ◽  
Zheng Hua Xiao

Sign in / Sign up

Export Citation Format

Share Document