Design in Landscape Planning Solutions

Author(s):  
Bartlett Warren-Kretzschmar ◽  
Christina von Haaren
Keyword(s):  
1996 ◽  
Author(s):  
Carl Steinitz ◽  
Michael Binford ◽  
Paul Cote ◽  
Thomas Edwards ◽  
Ervin Jr. ◽  
...  

Author(s):  
Inna Nikonorova ◽  
Inna Nikonorova

Cheboksary reservoir impact to the coast is manifested in the geophysical impact associated with abrasion activities. Geomorphological area of influence at the moment reaches a width of about 40 m, where are the coasts reformation (erosion, collapse, slumping, sliding, transfer or accumulation of sediments, waterlogged processes). Hydrogeological impact is effect on the level of groundwater. We have proposed the conceptual foundations of functional zoning of the reservoir banks that will help to optimize its operation. Selection zones came in accordance with the principles of landscape planning: 1. The zone of strict water protection: the main purpose – preservation of needing special protection areas. 2. The zone of moderate restrictions: preservation extensively used landscapes. 3. The zone of partial restrictions: improving the pre-emptive particularly vulnerable areas and changing intensity or type of use. 4. The zone of conservation of natural components in agricultural landscapes: ensuring health of the natural environment in the habitats used in agricultural economy. 5. The zone of preservation of vacant space and the natural environment in the settlements: to maintain the required quantity and quality of available green space in the large towns. 6. The zone of improving heavily used areas: elimination of harmful stress and environmental sanitation in the countryside where economic activities and the lack of measures to reduce their risks lead to degradation natural system.


2021 ◽  
Vol 127 ◽  
pp. 102387
Author(s):  
S.B. Pena ◽  
M.M. Abreu ◽  
M.R. Magalhães

Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Yixu Wang ◽  
Mingxue Xu ◽  
Jun Li ◽  
Nan Jiang ◽  
Dongchuan Wang ◽  
...  

Although research relating to the urban heat island (UHI) phenomenon has been significantly increasing in recent years, there is still a lack of a continuous and clear recognition of the potential gradient effect on the UHI—landscape relationship within large urbanized regions. In this study, we chose the Beijing-Tianjin-Hebei (BTH) region, which is a large scaled urban agglomeration in China, as the case study area. We examined the causal relationship between the LST variation and underlying surface characteristics using multi-temporal land cover and summer average land surface temperature (LST) data as the analyzed variables. This study then further discussed the modeling performance when quantifying their relationship from a spatial gradient perspective (the grid size ranged from 6 to 24 km), by comparing the ordinary least squares (OLS) and geographically weighted regression (GWR) methods. The results indicate that: (1) both the OLS and GWR analysis confirmed that the composition of built-up land contributes as an essential factor that is responsible for the UHI phenomenon in a large urban agglomeration region; (2) for the OLS, the modeled relationship between the LST and its drive factor showed a significant spatial gradient effect, changing with different spatial analysis grids; and, (3) in contrast, using the GWR model revealed a considerably robust and better performance for accommodating the spatial non-stationarity with a lower scale dependence than that of the OLS model. This study highlights the significant spatial heterogeneity that is related to the UHI effect in large-extent urban agglomeration areas, and it suggests that the potential gradient effect and uncertainty induced by different spatial scale and methodology usage should be considered when modeling the UHI effect with urbanization. This would supplement current UHI study and be beneficial for deepening the cognition and enlightenment of landscape planning for UHI regulation.


Sign in / Sign up

Export Citation Format

Share Document