Current Trends of Additive Manufacturing in the Aerospace Industry

Author(s):  
L. Jyothish Kumar ◽  
C. G. Krishnadas Nair
2021 ◽  
Vol 11 (11) ◽  
pp. 5054
Author(s):  
Sejal Budholiya ◽  
Aayush Bhat ◽  
S. Aravind Raj ◽  
Mohamed Thariq Hameed Sultan ◽  
Ain Umaira Md Shah ◽  
...  

The field of bio-inspired design has tremendously transitioned into newer automated methods, yet there are methods being discovered which can elucidate underlying principles in design, materials, and manufacturing. Bio-inspired design aims to translate knowledge from the natural world to the current trends in industry. The recent growth in additive manufacturing (AM)methods has fueled the tremendous growth of bio-inspired products. It has enabled the production of intricate and complicated features notably used in the aerospace industry. Numerous methodologies were adopted to analyse the process of bio-inspired material selection, manufacturing methods, design, and applications. In the current review, different approaches are implemented to utilize bio-inspired designs that have revolutionized the aerospace industry, focusing on AM methods.


2021 ◽  
pp. 147807712110300
Author(s):  
Ali Baghi ◽  
Saleh Kalantari ◽  
Aryan Baghi

The design and manufacturing of concrete elements need to be reconsidered in light of current trends in architectural geometry. Today, there is a movement toward greater customization and adaptability of concrete elements using “reconfigurable formworks” and “additive manufacturing.” Our study approached the issue of fabricating non-standardized concrete elements from the perspective of a “reconfigurable fabrication platform.” Specifically, we developed a method of fabricating geometrically diverse concrete joints by combining flexible pressure-enduring tubes with a rigid mechanism, resulting in an adaptive concrete-casting machine. This platform, which we named “Flexi-node,” can be used in conjunction with a relevant fabrication-aware digital design tool. Users can computationally design and fabricate a great variety of concrete joints using just one mold, with a minimum of material waste and with no distortion from hydrostatic pressure as would typically occur in a fully flexible formwork.


2016 ◽  
Vol 877 ◽  
pp. 611-616 ◽  
Author(s):  
J. Fixter ◽  
J. Gu ◽  
J. Ding ◽  
Stewart W. Williams ◽  
Philip B. Prangnell

An investigation has been performed into the compatibility of aluminum alloys used in the aerospace industry with Wire-Arc Additive Manufacturing. Modelling and preliminary experimental trials have been performed to show that it is viable to use Al-Cu-Mg alloys, like 2024, without solidification cracking. A relatively fine and texture free grain structure was obtained in the as-deposited WAAM material and the addition of inter-pass deformation, by rolling each added layer, led to further grain size refinement. With adequate control of porosity and subsequent heat treatment, the WAAM material was found to have tensile properties comparable to that of standard wrought products.


Sign in / Sign up

Export Citation Format

Share Document