Sedimentology of Potential Tertiary Fluvial Deposits in Kluang, Johor, Malaysia

ICIPEG 2016 ◽  
2017 ◽  
pp. 313-321
Author(s):  
Choong Chee Meng ◽  
Nur Huda M. Jamin ◽  
Muhammad Azfar Mohamed ◽  
Chin Soon Mun
Keyword(s):  
1959 ◽  
Vol 35 (4) ◽  
pp. 305-311 ◽  
Author(s):  
W. W. Jeffrey

Distinctive rooting modifications of white spruce were noted on fluvial sites of the lower Peace River. Photographs of these modifications are given and a multi-layered form is suggested to have arisen through adventitious rooting stimulated by periodic inundation. Significance of the modifications in silviculture is briefly discussed.


1984 ◽  
Vol 21 (6) ◽  
pp. 698-714 ◽  
Author(s):  
David R. Taylor ◽  
Roger G. Walker

The marine Moosebar Formation (Albian) has a currently accepted southerly limit at Fall Creek (Ram River area). It consists of marine mudstones with some hummocky and swaley cross-stratified sandstones indicating a storm-dominated Moosebar (Clearwater) sea. We have traced a tongue of the Moosebar southward to the Elbow River area (150 km southeast of Fall Creek), where there is a brackish-water ostracod fauna. Paleoflow directions are essentially northwestward (vector mean 318°), roughly agreeing with turbidite sole marks (329°) in the Moosebar of northeastern British Columbia.The Moosebar sea transgressed southward over fluvial deposits of the Gladstone Formation. In the Gladstone, thick channel sands (4–8 m) are commonly multistorey (up to about 15 m), with well developed lateral accretion surfaces. The strike of the lateral accretion surfaces and the orientation of the walls of channels and scours indicate northwestward flow (various vector means in the range 307–339°). The Moosebar transgression was terminated by construction of the Beaver Mines floodplain, with thick, multistorey sand bodies up to about 35 m thick. Flow directions are variable, but various vector means roughly cluster in the north to northeast segment. This indicates a major change in dispersal direction from the Gladstone and Moosebar formations.A review of many Late Jurassic and Cretaceous units shows a dominant dispersal of sand parallel to regional strike. This flow is mostly north-northwestward (Passage beds, Cadomin, Gladstone, Moosebar, Gates, Chungo), with the southeasterly dispersal of the Cardium being the major exception. Only at times of maximum thickness of clastic input (Belly River and higher units, and possibly Kootenay but there are no published paleocurrent data) does the sediment disperse directly eastward or northeastward from the Cordillera toward the Plains.


1987 ◽  
Vol 24 (4) ◽  
pp. 771-783 ◽  
Author(s):  
Lorne R. P. Rosenthal ◽  
Roger G. Walker

The Chungo Member of the Wapiabi Formation (Campanian) shales out northward and (or) eastward from Lundbreck to the Bow Valley, southern Alberta. At Lundbreck, basinal mudstones are overlain by turbidite and hummocky cross-stratified sandstones in an overall coarsening-upward sequence. The marine part of the sequence is capped by dominantly swaley cross-stratified sandstones, interpreted as storm-dominated shoreface deposits. Nonmarine fluvial deposits overlie the shoreface. Essentially the same sequence persists northward to the area of the Highwood River, but in the Highwood River – Sheep River – Longview area, the swaley cross-stratified shoreface sandstones are progressively cut out by a north- and (or) east-ward-dipping erosion surface with up to 40 m of relief. The erosion surface is overlain by a lag of chert pebbles and then by a marine coarsening-upward sequence of offshore to shoreface deposits (the lower tongue of the Nomad Member). Nonmarine Chungo deposits then prograded north- and (or) eastward to overlie this marine tongue in the Highwood area. They are in turn abruptly overlain by a gravel-coated transgressive surface marking the upper marine tongue of the Nomad Member. Finally, marine shales of the Nomad Member are abruptly overlain by dominantly fluvial rocks of the Belly River Formation.We suggest that the main Chungo shoreface, stratigraphically equivalent to the Milk River sandstone of southeastern Alberta, prograded north- and (or) eastward to at least the Highwood River area. A rapid relative lowering of sea level followed by stillstand resulted in the formation of the erosion surface and the supply of gravel to the basin. The overlying coarsening-upward sequence indicates the resumption of shoreline progradation, but this appears to have been relatively short-lived; it was terminated by the transgression of the upper Nomad tongue.


Geology ◽  
2021 ◽  
Author(s):  
C.P. Galeazzi ◽  
R.P. Almeida ◽  
A.H. do Prado

Alluvial rivers are the most important agents of sediment transport in continental basins, whose fluvial deposits enclose information related to the time when rivers were active. In order to extract the most information from fluvial deposits in the sedimentary record, it is imperative to quantify the natural variability of channel patterns at the global scale, explore what controls may influence their development, and investigate whether channel pattern information is preserved in the alluvial plains in order to develop tools for recognizing them in the sedimentary record. By surveying 361 reaches of modern alluvial rivers with available water discharge data at a global scale, we present a quantitative channel pattern classification based on sinuosity and channel count index applicable to the recognition in the rock record. A continuum of channel patterns ranging from high-sinuosity single channel to lowsinuosity multichannels is documented, along with the proportion of depositional elements in their alluvial plains and their conditions of occurrence. Preserved barforms in the alluvial plains of these rivers are used to infer and quantify paleoflow directions at the channel-belt scale and result in ranges of paleocurrent circular variance that may lead to channel pattern identification in the rock record. Data from this work indicate that the recognition of channel patterns may be used to predict paleogeographic features such as the scale of drainage basin area and discharge, slope, and annual discharge regimes.


1980 ◽  
Vol 17 (2) ◽  
pp. 244-253
Author(s):  
John Edward Callahan

Stream sediments from a 13 000 km2 previously glaciated area in central Labrador near Churchill Falls were examined for their heavy mineral content. The minus 0.25 mm (60 mesh) nonmagnetic heavy mineral fraction from 846 stream sediment samples consists mainly of magnetite, ilmenite. garnet, hornblende, epidote and minor clinopyroxene, orthopyroxene. kyanite. sillimanite, biotite. apatite, and zircon. Changes in the frequency distribution of epidote, hornblende, garnet, and sillimanite in the stream sediments correspond well with those reported in previously mapped underlying bedrock lithologies. The occurrence of kyanite and sillimanite, high concentrations of garnet and opaques (mainly ilmenite), and lower concentrations of hornblende and epidote were used to determine grades of regional metamorphism, resulting in revision of the geologic map of this area. Heavy minerals in glacial drift or fluvial deposits may be useful as an aid in mapping in glaciated areas.


Sign in / Sign up

Export Citation Format

Share Document