Fundamental Mathematical Relations of Solar Drying Systems

Author(s):  
Stamatios Babalis ◽  
Elias Papanicolaou ◽  
Vassilios Belessiotis
Author(s):  
Jiapeng Liu ◽  
Ting Hei Wan ◽  
Francesco Ciucci

<p>Electrochemical impedance spectroscopy (EIS) is one of the most widely used experimental tools in electrochemistry and has applications ranging from energy storage and power generation to medicine. Considering the broad applicability of the EIS technique, it is critical to validate the EIS data against the Hilbert transform (HT) or, equivalently, the Kramers–Kronig relations. These mathematical relations allow one to assess the self-consistency of obtained spectra. However, the use of validation tests is still uncommon. In the present article, we aim at bridging this gap by reformulating the HT under a Bayesian framework. In particular, we developed the Bayesian Hilbert transform (BHT) method that interprets the HT probabilistic. Leveraging the BHT, we proposed several scores that provide quick metrics for the evaluation of the EIS data quality.<br></p>


2008 ◽  
Vol 4 (2) ◽  
pp. 1-8 ◽  
Author(s):  
István Farkas
Keyword(s):  

Author(s):  
L. Solymar ◽  
D. Walsh ◽  
R. R. A. Syms

Both intrinsic and extrinsic semiconductors are discussed in terms of their band structure. The acceptor and donor energy levels are introduced. Scattering is discussed, from which the conductivity of semiconductors is derived. Some mathematical relations between electron and hole densities are derived. The mobilities of III–V and II–VI compounds and their dependence on impurity concentrations are discussed. Band structures of real and idealized semiconductors are contrasted. Measurements of semiconductor properties are reviewed. Various possibilities for optical excitation of electrons are discussed. The technology of crystal growth and purification are reviewed, in particular, molecular beam epitaxy and metal-organic chemical vapour deposition.


Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 559-582
Author(s):  
Azwin Kamarulzaman ◽  
M. Hasanuzzaman ◽  
N.A. Rahim

2021 ◽  
Vol 1109 (1) ◽  
pp. 012057
Author(s):  
A H Atienza ◽  
L A Adorador ◽  
J A Hernandez ◽  
F J Vinagrera
Keyword(s):  

JAMA ◽  
1904 ◽  
Vol XLIII (12) ◽  
pp. 787
Author(s):  
WINFIELD S. HALL

2011 ◽  
Vol 71-78 ◽  
pp. 2073-2076
Author(s):  
Fen E Hu ◽  
Zhi Juan Wang

A solar air drying system including solar air collector, drying cabinet and air blower for notoginseng drying has been constructed and tested. Two identical air solar collectors with two air channels, V-groove absorption heat plates and a single glass cover have been employed. The results of test show that the solar air collectors can obtain a good thermal performance in winter season. When the air flow mass rate is fixed at 0.0597kg·s-1, the maximum values of thermal efficiency and outlet air temperature are 76.0% and 62.2°C, respectively. The experimental analysis between two sampling notoginseng drying suggests that the solar drying is very effective, and the drying time has been shorten to about 440 minutes from 990 minutes of the traditional drying by sun. It is also observed that using the solar drying system notoginseng has a higher quality than traditional drying method.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
P. T. Akonor ◽  
H. Ofori ◽  
N. T. Dziedzoave ◽  
N. K. Kortei

The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎=47.4) than the air-oven-dried (L⁎=49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p<0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently.


Sign in / Sign up

Export Citation Format

Share Document