drying characteristics
Recently Published Documents


TOTAL DOCUMENTS

1011
(FIVE YEARS 254)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
pp. 1-14
Author(s):  
Xing Ren ◽  
Linlin Li ◽  
Junliang Chen ◽  
Lujie Zhao ◽  
Panpan Liu ◽  
...  

JSFA reports ◽  
2022 ◽  
Author(s):  
Omotayo A. Aregbesola ◽  
Titilope Modupe Olagunju ◽  
Godwin E. Akpan

Author(s):  
Md. Sazzat Hossain Sarker ◽  
Md. Akhtaruzzaman ◽  
Md. Hasan Tarek Mondal ◽  
Md. Mostafa Kamal ◽  
Emrul Ahsan Plabon

Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 197-203
Author(s):  
N.M. Thuy ◽  
V.Q. Minh ◽  
T.C. Ben ◽  
H.T.N. Ha ◽  
N.V. Tai

With attractive flower colours ranging from dark green to purple, Butterfly pea (Clitoria ternatea L.) is grown year-round in Vietnam. The purpose of this study is to determine the effect of air temperature on drying time and antioxidant compounds of Butterfly pea flowers, fitting the drying curves and testing the goodness of fit. In this study, air drying characteristics of the Butterfly pea flowers were determined using drying air temperature from 55oC to 70oC at a constant air velocity of 1 m/s. The data of experimental moisture loss were fitted to selected seven thin-layer drying models. The effect of drying conditions on the anthocyanin and total phenolic compound changes of Butterfly pea flower were compared. The effect of temperature on the diffusivity was described using the Arrhenius equation with an activation energy of 71.63 kJ.mol- ¹. At increasing temperature, the effective moisture diffusivity values ranged from 2.39×10-12 and 7.76×10-12 m²s - ¹. The mathematical models were compared according to the three statistical parameters such as the coefficient of determination (R2 ), reduced chi-square (χ 2 ) and root mean square error (RMSE) between the observed and predicted moisture ratios. The highest value of R2 (99.8%) and the lowest values of χ 2 (0.0004) and RMSE (0.0178) were observed for drying air temperature of 70oC. Among the seven mathematical models tested with experimental data, the Page model could sufficiently be described the drying characteristics of the Butterfly pea flower.


Author(s):  
J. Isa ◽  
O. I. Majasan ◽  
K. A. Jimoh

During milling of cereal grains, bran which is separated from the starchy endosperm of the grain is a major by-product. In this study, milled sorghum residue was dried in a cabinet dryer under different conditions (temperature and air velocity). The obtained drying data were fitted into ten existing mathematical models and obtained the best model while, the effective moisture diffusivity and activation energy of the drying process was determined using Arrhenius type approach. The result shows that the initial moisture content obtained for the sorghum residue using standard oven drying method were 41.28 ± 0.33%, 49.52 ± 0.63 % and 47.06 ± 0.42 % on wet basis for the wet residue of variety A, B and C, respectively, at equilibrium point, the final moisture content of about 12.93 ± 0.14 – 14.31± 0.07 as temperature ranges from 40 oC to 70 oC and air velocity ranges from 0.8 m/s to 1.2 m/s. During the drying process, the drying rate falls more rapidly as it was initially high as a result of more moisture in the sorghum residue and the drying rate decreases slowly until reaching the reduced moisture content. The obtained values of effective moisture diffusivity (Deff) ranges between 9.89 x 10-10 and 22.21 x 10-10 m2/s, 9.45 x 10-10 and 20.62 x 10-10 m2/s and 8.56 x 10-10 and 20.76 x 10-10 m2/s for variety A, B and C, respectively. However, the result of the modelling shows that the drying characteristics of variety A and B of the sorghum residue can be predicted using Midilli et al. model while the drying behaviour of Variety C can be predicted using Hii et al. model.


Sign in / Sign up

Export Citation Format

Share Document