Karst Rocky Desertification Dynamic Monitoring Analysis Based on Remote Sensing for a Typical Mountain Area in Southeast of Yunnan Province

Author(s):  
Ling Yuan ◽  
Shu Gan ◽  
Xiping Yuan ◽  
Ce Wang ◽  
Da Yi
2013 ◽  
Vol 444-445 ◽  
pp. 869-873
Author(s):  
Shu Gan ◽  
Xi Ping Yuan ◽  
Gang Sun ◽  
Xiao Lun Zhang ◽  
Ying Li

Karst rocky desertification is one of the serious environment problems in southwest of China. In this study, a typical county with karst rocky desertification which located in Southeast of Yunnan province is selected as a work area at first. Based on the datum collection about land use status and field verification surveying in study area, the technique of remote sensing image processing and GIS spatial analysis was integrated used to monitor the karst rocky desertification status and got its information in different degree. Analysis for karst rocky desertification spatial distributing, the main result is that there is more amount proportion of karst rocky desertification land cover in case study area and these large numbers patches of karst rocky desertification mosaic beset in the different land use types, such as forest, plantation and artificial town or other infrastructure building. So it is stringent need to deepen research the karst rocky desertification development and its spatial expand. Another result include that remote sensing monitoring for the karst rocky desertification is one of the important advance technique method, but it also need to fuse more another assistant information according to the actual condition in case study area, for example, the land use status in quo is a good means to assistant remote sensing monitoring karst rocky desertification by spatial restrict effect.


Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 83-91 ◽  
Author(s):  
J. Y. Zhang ◽  
M. H. Dai ◽  
L. C. Wang ◽  
C. F. Zeng ◽  
W. C. Su

Abstract. Karst rocky desertification occurs after vegetation deteriorates as a result of intensive land use, which leads to severe water loss and soil erosion and exposes basement rocks, creating a rocky landscape. Karst rocky desertification is found in humid areas in southwest China, the region most seriously affected by rocky desertification in the world. In order to promote ecological restoration and help peasants out of poverty, the Chinese government carried out the first phase of a rocky desertification control project from 2006 to 2015, which initially contained the expansion of rocky desertification. Currently, the Chinese government is prepared to implement the second phase of the rocky desertification control project, and therefore it is essential to summarise the lessons learned over the last 10 years of the first phase. In this paper, we analyse the driving social and economic factors behind rocky desertification, summarise the scientific research on rocky desertification in the region, and finally identify the main problems facing rocky desertification control. In addition, we put forward several policy suggestions that take into account the perspective of local peasants, scientific research, and China's economic development and urbanisation process. These suggestions include promoting the non-agriculturalization of household livelihoods, improving ecological compensation, strengthening the evaluation of rocky desertification control and dynamic monitoring, and strengthening research on key ecological function recovery technologies and supporting technologies.


Author(s):  
M. Yao ◽  
G. Zhou ◽  
W. Wang ◽  
Z. Wu ◽  
Y. Huang ◽  
...  

Karst area is a pure natural resource base, at the same time, due to the special geological environment; there are droughts and floods alternating with frequent karst collapse, rocky desertification and other resource and environment problems, which seriously restrict the sustainable economic and social development in karst areas. Therefore, this paper identifies and studies the karst, and clarifies the distribution of karst. Provide basic data for the rational development of resources in the karst region and the governance of desertification. Due to the uniqueness of the karst landscape, it can’t be directly recognized and extracted by computer in remote sensing images. Therefore, this paper uses the idea of “RS + DEM” to solve the above problems. this article is based on Landsat-5 TM imagery in 2010 and DEM data, proposes the methods to identify karst information research what is use of slope vector diagram, vegetation distribution map, distribution map of karst rocky desertification and other auxiliary data in combination with the signs for human-computer interaction interpretation, identification and extraction of peak forest, peaks cluster and isolated peaks, and further extraction of karst depression. Experiments show that this method achieves the “RS + DEM” mode through the reasonable combination of remote sensing images and DEM data. It not only effectively extracts karst areas covered with vegetation, but also quickly and accurately locks down the karst area and greatly improves the efficiency and precision of visual interpretation. The accurate interpretation rate of karst information in study area in this paper is 86.73 %.


2021 ◽  
Vol 13 (1) ◽  
pp. 867-879
Author(s):  
Lingyu Wang ◽  
Quan Chen ◽  
Zhongfa Zhou ◽  
Xin Zhao ◽  
Jiancheng Luo ◽  
...  

Abstract Accurate crop planting structure (CPS) information and its relationship with the surrounding special environment can provide strong support for the adjustment of agricultural structure in areas with limited cultivated land resources, and it will help regional food security, social economy, and ecological balance adjustment. However, due to the perennial cloudy, rainy, and scattered arable land in Karst mountainous areas, the monitoring of planting structure by traditional remote sensing methods is greatly limited. In this regard, we focus on synthetic aperture radar (SAR) remote sensing, which can penetrate clouds and rain, without light constraints to image. In this article, based on parcel-based temporal sequence SAR, the CPS in South China karst area was extracted by deep learning technology, and the spatial coupling relationship between CPS and karst rocky desertification (KRD) was analyzed. The results showed that: (a) The overall accuracy of CPS classification was 75.98%, which proved that the geo-parcel-based time series SAR has a good effect for the CPS mapping in the karst mountainous areas; (b) Through the analysis of the spatial relationship between the planting structure and KRD, we found that the lower KRD level caused the simpler CPS and the higher KRD grade caused more complex CPS and more richer landscape types. The spatial variation trend of CPS landscape indicates the process of water shortage and the deepening of KRD in farmland; (c) The landscape has higher connectivity (Contagion Index, CI 0.52–1.73) in lower KRD level and lower connectivity (CI 0.83–2.05) in higher KRD level, which shows that the degree of fragmentation and connection of CPS landscape is positively proportional to the degree of KRD. In this study, the planting structure extraction of crops under complex imaging environment was realized by using the farmland geo-parcels-based time series Sentinel-1 data, and the relationship between planting structure and KRD was analyzed. This study provides a new idea and method for the extraction of agricultural planting structure in the cloudy and rainy karst mountainous areas of Southwest China. The results of this study have certain guiding significance for the adjustment of regional agricultural planting structure and the balance of regional development.


2013 ◽  
Vol 444-445 ◽  
pp. 1239-1243
Author(s):  
Xiao Lun Zhang ◽  
Shu Gan ◽  
Ying Li ◽  
Ji Lei Huang ◽  
Shuai Gao

Karst rocky desertification is a major ecological disaster faced by the southeastern region of Yunnan Province, in China. The research of land use status in rocky desertification area is more and more concerned by human. Through remote sensing integrated survey ways to establish the spectral database of six kinds of typical land types, such as water, forest land, paddy field, grassland, dry land and bare land; then, Normalized Difference Vegetation Index (NDVI) processing and Tasseled Cap transformation processing for the spectral data; finally, the spectral characteristics and the variation of typical land types was analyzed and studied. The results indicated that, there are no significant differences of spectral of the six kinds of typical land types, after the processing of NDVI, the water, the forest land and grassland with larger vegetation coverage, and the paddy land, dry land and bare land with smaller vegetation coverage, can be well distinguish, but the distinction between forest land and grassland is bad, the distinction of paddy land, dry land and bare land is also bad; after the Tasseled Cap transformation processing, the dispersion degree of water, forest land, paddy field and grassland is better, the dispersion degree of dry land and bare land is a bit poor, need to be further studied. The remote sensing integrated survey and the analysis of spectral properties are important foundation for the Land Use / Land Cover Change (LUCC) and the dynamic monitoring of rocky desertification in southeastern rocky desertification region of Yunnan province.


Sign in / Sign up

Export Citation Format

Share Document