Numerical Simulation and Wind Tunnel Test Validation of the Aerodynamic Brake Panel

Author(s):  
Liqiang Gao ◽  
Xiong Hu ◽  
Dejian Sun ◽  
Ying Xi ◽  
Guohua Wang
2010 ◽  
Vol 163-167 ◽  
pp. 4389-4394
Author(s):  
Cheng Qi Wang ◽  
Zheng Liang Li ◽  
Zhi Tao Yan ◽  
Qi Ke Wei

Wind load on complex-shape building, the wind tunnel test and numerical simulation were carried out. The two technologies supplement each other and their results meet well. There are mainly positive pressures on the windward surface, negative pressures on the roof, the leeward surface and the side. Especially, negative pressure is higher in the leeward region of the building corner. Its effect induced by the shape of the complex-shape building is remarkable.


2014 ◽  
Vol 8 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Liu Yuejun ◽  
Tang Ai P. ◽  
Liu Ke T. ◽  
Tu Jie W.

Despite the fact that the wind tunnel tests have been carried out on iced transmission lines subjected to wind load, it is not practical to do wind tunnel tests due to its high cost. This paper describes a detailed numerical simulation method that can be used to instead of wind tunnel tests. Based on the galloping mechanism of iced transmission lines, the aerodynamic test was simulated with the typical crescent super-large thickness iced four bundled conductors. One of the results highlighted in this study is that the wind angle of attack had significant influence on the aerodynamics of iced conductors. The Den-Hartog and O.Nigol coefficient were calculated to determine galloping of iced transmission lines, comparing with the reference of wind tunnel test in the Zhejiang university, the range of the wind angle of attack to the bundled conductor which can lead to gallop is larger than single wire, but the absolute value of amplitude is less than the single conductor, split conductor is more likely to gallop than single conductor.


2011 ◽  
Vol 137 ◽  
pp. 429-434 ◽  
Author(s):  
Ling Bai ◽  
Ke Liu

A fluid-structure interaction numerical simulation technique based on CFD has been developed to study the vortex-induced vibration behavior of steel arch bridge hanger. Above all, wind acting on bridge hanger is simulated by using Flunet and then vortex-induced dynamic motion of hanger is solved by method in the User Defined Function (UDF). Finally hanger’s transient vibration in wind is achieved by dynamic mesh method provided by Fluent. Using this technique, the vortex-induced vibration behavior of hanger of the Nanjing Dashengguan Yangtze River Bridge is analyzed, including vibration amplitude, vibration-started wind speed and vortex shedding frequency. The study also considers influences of different section type (rectangle, chamfered rectangle and H) of hanger. The following conclusions are obtained. Firstly hanger of different section has different vibration behavior. Secondly vibration-started wind speed of different section hanger differs with each other. Thirdly relation between vibration amplitude and incoming wind speed varies obviously. At the same time, numerical results are compared with those of one wind tunnel test and the out coming is satisfied. Relation between vibration amplitude and wind speed in both numerical simulation and wind tunnel test is similar because vibration-started wind speed in numerical result has only 10% discrepancy with that in wind tunnel test while vibration amplitude’s discrepancy is only 15%. Consequently, analysis results show the reliability of this numerical simulation technique.


Author(s):  
Xuanyi Zhou ◽  
Luyang Kang ◽  
Ming Gu ◽  
Liwei Qiu ◽  
Jinhai Hu

2013 ◽  
Vol 423-426 ◽  
pp. 2063-2067
Author(s):  
Bo Zhang ◽  
Shu Shan Wang ◽  
Meng Yu Cao ◽  
Yu Xin Xu

A wind tunnel test is designed to study aerodynamic effects of one individual rocket with deflectable nose. The test measures pressure with U-bend tube which is cost effective. Using rubber tubes in different lengths to measure pressure distributions of a flat-plate, and calculating how rubber tube affects the measurement, in order to modify the measured surface pressure of the nose. The surface pressure varies on different points while yawing angle and attack angle changes, the changing regularity could provide data for following numerical simulation and trajectory control.


2012 ◽  
Vol 532-533 ◽  
pp. 352-356
Author(s):  
Hua Bai ◽  
Fang Liang Wang ◽  
Yu Li

In this paper, the distribution of surface wind pressure and wind speed of Hangzhou bay bridge, offshore platform and sightseeing tower is numerically simulated based on Fluent. Two turbulence models, standard k ε model and Realizable k ε model, are used. The influence of the wind pressure distribution of the offshore platform and sightseeing tower by Hangzhou bay bridge is also analyzed. And the detailed comparison between numerical simulation and wind tunnel test is given. Results show that the impact of Hangzhou bay bridge on platform and sightseeing tower occurs mainly with the angle of the wind less than 450. When the angle of the wind is more than 450, the impact is little. The upper of the sightseeing tower does not almost suffer the effect of other buildings. The surface pressure of the platform changes from 5% to 15% between under bridge and under non-bridge condition. The surface pressure of sightseeing tower changes from 0.05% to 3%. The influence on the platform by the bridge is significant but not significant on the sightseeing tower. The simulation results of the tower and mast structure given by both standard k ε model and Realizable k ε model find that the windward side is ideal; the crosswind side is the best; the leeward side is less than ideal. By contrast, the Realizable k ε model is a closer correlation with wind tunnel test than standard k ε model.


2011 ◽  
Vol 250-253 ◽  
pp. 3811-3814
Author(s):  
Cheng Hsin Chang ◽  
Jen Mu Wang ◽  
Chii Ming Cheng

This paper investigated the structural responses of the wind turbine due to wind loads by performing the wind tunnel test and the Computational Fluid Dynamics, (CFD). The base shear force and the base moment of the wind turbine measured by the wind tunnel test were compared with the numerical simulation results. Both the numerical dynamic mesh and sliding mesh models were selected for the numerical simulations. The results showed that the dynamic mesh model was better than the sliding model by comparing to the wind tunnel test result. In the case of the k-epsilon RNG turbulence model, the prediction of the bending moment affecting by acrossswind was more than 50%, and the prediction of the force affecting by acrosswind was less than 3%. The both simulation results of the prototype and the full scale wind turbine were obtained by CFD model. The comparisons of the result showed that the error of Fxwas about 15% and Mywas about 13.5%.


Sign in / Sign up

Export Citation Format

Share Document