Time Series Regression of Weather Parameters Over the Last Century for Cotton Crop

Author(s):  
Riddhi Patel ◽  
Geetali Saha
2021 ◽  
Vol 49 (1) ◽  
Author(s):  
N. D. B. Ehelepola ◽  
Kusalika Ariyaratne ◽  
A. M. S. M. C. M. Aththanayake ◽  
Kamalanath Samarakoon ◽  
H. M. Arjuna Thilakarathna

Abstract Background Leptospirosis is a bacterial zoonosis. Leptospirosis incidence (LI) in Sri Lanka is high. Infected animals excrete leptospires into the environment via their urine. Survival of leptospires in the environment until they enter into a person and several other factors that influence leptospirosis transmission are dependent upon local weather. Past studies show that rainfall and other weather parameters are correlated with the LI in the Kandy district, Sri Lanka. El Niño Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean Dipole (IOD) are teleconnections known to be modulating rainfall in Sri Lanka. There is a severe dearth of published studies on the correlations between indices of these teleconnections and LI. Methods We acquired the counts of leptospirosis cases notified and midyear estimated population data of the Kandy district from 2004 to 2019, respectively, from weekly epidemiology reports of the Ministry of Health and Department of Census and Statistics of Sri Lanka. We estimated weekly and monthly LI of Kandy. We obtained weekly and monthly teleconnection indices data for the same period from the National Oceanic and Atmospheric Administration (NOAA) of the USA and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). We performed wavelet time series analysis to determine correlations with lag periods between teleconnection indices and LI time series. Then, we did time-lagged detrended cross-correlation analysis (DCCA) to verify wavelet analysis results and to find the magnitudes of the correlations detected. Results Wavelet analysis displayed indices of ENSO, IOD, and ENSO Modoki were correlated with the LI of Kandy with 1.9–11.5-month lags. Indices of ENSO showed two correlation patterns with Kandy LI. Time-lagged DCCA results show all indices of the three teleconnections studied were significantly correlated with the LI of Kandy with 2–5-month lag periods. Conclusions Results of the two analysis methods generally agree indicating that ENSO and IOD modulate LI in Kandy by modulating local rainfall and probably other weather parameters. We recommend further studies about the ENSO Modoki and LI correlation in Sri Lanka. Monitoring for extreme teleconnection events and enhancing preventive measures during lag periods can blunt LI peaks that may follow.


2013 ◽  
Vol 42 (4) ◽  
pp. 1187-1195 ◽  
Author(s):  
Krishnan Bhaskaran ◽  
Antonio Gasparrini ◽  
Shakoor Hajat ◽  
Liam Smeeth ◽  
Ben Armstrong

2007 ◽  
Vol 191 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Lisa A. Page ◽  
Shakoor Hajat ◽  
R. Sari Kovats

BackgroundSeasonal fluctuation in suicide has been observed in many populations. High temperature may contribute to this, but the effect of short-term fluctuations in temperature on suicide rates has not been studied.AimsTo assess the relationship between daily temperature and daily suicide counts in England and Wales between 1 January 1993 and 31 December 2003 and to establish whether heatwaves are associated with increased mortality from suicide.MethodTime-series regression analysis was used to explore and quantify the relationship between daily suicide counts and daily temperature. The impact of two heatwaves on suicide was estimated.ResultsNo spring or summer peak in suicide was found. Above 18 °, each 1 ° increase in mean temperature was associated with a 3.8 and 5.0% rise in suicide and violent suicide respectively. Suicide increased by 46.9% during the 1995 heatwave, whereas no change was seen during the 2003 heat wave.ConclusionsThere is increased risk of suicide during hot weather.


Author(s):  
Arie-Willem de Leeuw ◽  
Mathieu Heijboer ◽  
Mathijs Hofmijster ◽  
Stephan van der Zwaard ◽  
Arno Knobbe

Author(s):  
Rati WONGSATHAN

The novel coronavirus 2019 (COVID-19) pandemic was declared a global health crisis. The real-time accurate and predictive model of the number of infected cases could help inform the government of providing medical assistance and public health decision-making. This work is to model the ongoing COVID-19 spread in Thailand during the 1st and 2nd phases of the pandemic using the simple but powerful method based on the model-free and time series regression models. By employing the curve fitting, the model-free method using the logistic function, hyperbolic tangent function, and Gaussian function was applied to predict the number of newly infected patients and accumulate the total number of cases, including peak and viral cessation (ending) date. Alternatively, with a significant time-lag of historical data input, the regression model predicts those parameters from 1-day-ahead to 1-month-ahead. To obtain optimal prediction models, the parameters of the model-free method are fine-tuned through the genetic algorithm, whereas the generalized least squares update the parameters of the regression model. Assuming the future trend continues to follow the past pattern, the expected total number of patients is approximately 2,689 - 3,000 cases. The estimated viral cessation dates are May 2, 2020 (using Gaussian function), May 4, 2020 (using a hyperbolic function), and June 5, 2020 (using a logistic function), whereas the peak time occurred on April 5, 2020. Moreover, the model-free method performs well for long-term prediction, whereas the regression model is suitable for short-term prediction. Furthermore, the performances of the regression models yield a highly accurate forecast with lower RMSE and higher R2 up to 1-week-ahead. HIGHLIGHTS COVID-19 model for Thailand during the first and second phases of the epidemic The model-free method using the logistic function, hyperbolic tangent function, and Gaussian function  applied to predict the basic measures of the outbreak Regression model predicts those measures from one-day-ahead to one-month-ahead The parameters of the model-free method are fine-tuned through the genetic algorithm  GRAPHICAL ABSTRACT


2021 ◽  
Vol 16 (3) ◽  
pp. 197-210
Author(s):  
Utriweni Mukhaiyar ◽  
Devina Widyanti ◽  
Sandy Vantika

This study aims to determine the impact of COVID-19 cases in Indonesia on the USD/IDR exchange rate using the Transfer Function Model and Vector Autoregressive Moving-Average with Exogenous Regressors (VARMAX) Model. This paper uses daily data on the COVID-19 case in Indonesia, the USD/IDR exchange rate, and the IDX Composite period from 1 March to 29 June 2020. The analysis shows: (1) the higher the increase of the number of COVID-19 cases in Indonesia will significantly weaken the USD/IDR exchange rate, (2) an increase of 1% in the number of COVID-19 cases in Indonesia six days ago will weaken the USD/IDR exchange rate by 0.003%, (3) an increase of 1% in the number of COVID-19 cases in Indonesia seven days ago will weaken the USD/IDR exchange rate by 0.17%, and (4) an increase of 1% in the number of COVID-19 cases in Indonesia eight days ago will weaken the USD/IDR exchange rate by 0.24%.


Sign in / Sign up

Export Citation Format

Share Document