Role of Bacterial Consortia in Bioremediation of Textile Recalcitrant Compounds

Author(s):  
Madhava Anil Kumar ◽  
Palanichamy Baskaralingam ◽  
Abdur Rawoof Salma Aathika ◽  
Subramanian Sivanesan
2003 ◽  
Vol 69 (1) ◽  
pp. 452-460 ◽  
Author(s):  
Mary E. McKellar ◽  
Eric B. Nelson

ABSTRACT Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ultimum sporangium germination, reduced seed colonization, and reduced damping-off in transplant experiments. These reductions were not observed when cottonseeds were sown in a conducive leaf compost. Microbial consortia recovered from the surface of cottonseeds during the first few hours of germination in suppressive compost (suppressive consortia) induced significant levels of damping-off suppression, whereas no suppression was induced by microbial consortia recovered from cottonseeds germinated in conducive compost (conducive consortia). Suppressive consortia rapidly metabolized linoleic acid, whereas conducive consortia did not. Furthermore, populations of fatty-acid-metabolizing bacteria and actinobacteria were higher in suppressive consortia than in conducive consortia. Individual bacterial isolates varied in their ability to metabolize linoleic acid and protect seedlings from damping-off. Results indicate that communities of compost-inhabiting microorganisms colonizing cottonseeds within the first few hours after sowing in a Pythium-suppressive compost play a major role in the suppression of P. ultimum sporangium germination, seed colonization, and damping-off. Results further indicate that fatty acid metabolism by these seed-colonizing bacterial consortia can explain the Pythium suppression observed.


2009 ◽  
Vol 71-73 ◽  
pp. 151-154
Author(s):  
R.A. Bobadilla Fazzini ◽  
Pilar Parada Valdecantos

The role of biomolecules in bioleaching of copper sulphide minerals carried out by bacterial consortia with predominating acidithiobacilli species is of outmost interest. The proteomic analysis on bioleaching bacterial strains have been focused up to date on full Acidithiobacillus ferrooxidans proteome, allowing the identification of proteins belonging to the general stress response, phosphate limiting conditions and the ones linked to the periplasmic fraction. Our study shows for the first time the differential expression of secreted proteins by means of standard proteomics between pure cultures of Acidithiobacillus thiooxidans and in mixture with A. ferroxidans (metasecretome) grown in sulfur, where a set of proteins is de novo synthesized in the mixed culture, identifying an Omp40-like protein possibly related to bacterial adhesion, an hypothetical protein PSEEN2944 with unknown function and up-regulation of a cytochrome c biogenesis protein, findings that give an insight into the role of proteins at the sulfur – bacteria interface, highlighting the outputs of bacterial interactions in biomining environments at the protein secretion level.


2021 ◽  
Vol 2 ◽  
Author(s):  
Grazia Cecchi ◽  
Simone Di Piazza ◽  
Stefano Rosatto ◽  
Mauro Giorgio Mariotti ◽  
Enrica Roccotiello ◽  
...  

The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.


2020 ◽  
Author(s):  
Gabi Steinbach ◽  
Cristian Crisan ◽  
Siu Lung Ng ◽  
Brian Hammer ◽  
Peter Yunker

<p>Biofilms are highly structured, densely packed bacterial consortia where many different species can coexist. During biofilm development and growth, the different species often form spatial distribution patterns that govern biofilm composition and function. In some cases, emerging structures have been explained as the result of social interactions between bacteria, e.g. cooperation and competition. Others emphasize the role of local mechanics, where spatial structuring arises from forces exerted between cells or between cells and their environment. Typically, these two lines of argumentation are treated separately. Here, we show that mechanics and social interactions can be strongly interrelated and their combination can crucially impact biofilm formation and dynamics. Using confocal microscopy and bacterial co-culture assays, we examine how bacterial antagonism impacts biofilm mechanics, and vice versa. We study competing Vibrio cholerae strains that kill on contact using the Type 6 secretion system. In case of mutual killers, i.e. two V. cholerae strains that can kill each other on contact, this social interaction leads to the formation of clonal domains of the competing strains (Mc Nally et al., Nat Commun, 2017). Intuitively, an unequal fight may enable a superior killer to invade and quickly eliminate a much weaker competitor. However, we observe that killer cells can coexist with killing-deficient target cells for very long times, and find that this results from the mechanical consequences of the deadly competition. Killing produces dead cells, which accumulates between domains of competing cells and prevents subsequent killing. Counterintuitively, our results suggest that antagonistic interactions stabilize coexistence in diverse communities. The findings demonstrate that the impact of social interactions in bacterial consortia is complex, requiring the understanding of the structural and the statistical-mechanical processes in biofilms.</p>


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2020 ◽  
Vol 43 ◽  
Author(s):  
Stefen Beeler-Duden ◽  
Meltem Yucel ◽  
Amrisha Vaish

Abstract Tomasello offers a compelling account of the emergence of humans’ sense of obligation. We suggest that more needs to be said about the role of affect in the creation of obligations. We also argue that positive emotions such as gratitude evolved to encourage individuals to fulfill cooperative obligations without the negative quality that Tomasello proposes is inherent in obligations.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrew Whiten

Abstract The authors do the field of cultural evolution a service by exploring the role of non-social cognition in human cumulative technological culture, truly neglected in comparison with socio-cognitive abilities frequently assumed to be the primary drivers. Some specifics of their delineation of the critical factors are problematic, however. I highlight recent chimpanzee–human comparative findings that should help refine such analyses.


Sign in / Sign up

Export Citation Format

Share Document