hyperaccumulator plant
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
ayhan kocaman

Abstract One of its key aspects is the performance of plant extraction, the end-use of by-products and the recognition of its overall economic viability. Overall, phytoextraction seems to be a very promising technology for the removal of metallic pollutants from the environment and is being commercialized. In genetic engineering, support for the current plant phytoremedetion list plays a major role. Because it makes it possible to insert which genes in genetically modified plants the plant to metabolize a specific pollutant. In the sequence to be used for phytoremediation. In Turkey, the steel industry and its subindustries operate intensively in Karabuk province. It is located in the western region of the Black Sea and grew rapidly. For this reason, plants that grow in areas and soil samples around their roots are with anthropogenic pollution were taken in connection with the steel industry and the building industry where the waste is discharged. For guidance, samples of plants and soils of the same species were collected from orchards where industrial pollution and agricultural activity have not occurred, in order to worth comparing them. Thus, the properties of the hyperaccumulator and accumulation were investigated. These are Artemisa Dracunculus L (AD) and Erigeron Canadensis (EC) in the Asteraceae family. As the BAF shoot values of the AD plant are Pb and Se > 1, this is an accumulator plant for Pb and Se. At the EC plant, this is an accumulator for Pb, as only Pb>1. Since Cr, Hg, Sn and Cl <1, these elements are presumed to be exclusionary. Also, the two plants can be classified as potentially Ni-hyperaccumulatory plants because Ni is greater than 10 (Ni>10). BAF root of both plants has high phytostabilization capacity for CD from CD>1. The concentrations of Cd TF >1 in the leaf, stem and root indicate high phytoextraction efficiency and it can be said that it will exhibit high activity in soils contaminated by the CD. In addition, due to the fact that the Cd concentrations of both plants are close to the hyperaccumulator plant BAF, studies can be carried out to evaluate them as Cd-hyperaccumulator plant in future studies.


2021 ◽  
Vol 2 ◽  
Author(s):  
Grazia Cecchi ◽  
Simone Di Piazza ◽  
Stefano Rosatto ◽  
Mauro Giorgio Mariotti ◽  
Enrica Roccotiello ◽  
...  

The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.


2021 ◽  
Vol 905 (1) ◽  
pp. 012130
Author(s):  
Sutami ◽  
Purwanto ◽  
R Rosariastuti

Abstract Heavy metals pollution, especially Mercury (Hg), is one of the most serious environmental problems. The presence of excessive Hg will cause soil degradation and threaten the life of the ecosystem, for that remediation is necessary. Biduri is known to be able to absorb heavy metals, but there is no research on the ability of Biduri in absorb Hg. The use of indigenous bacteria is expected to increase the absorption of Mercury by Biduri. The purpose of this study was to determine the potential of Biduri combined with indigenous bacteria and Agrobacterium sp I37 in absorbing of Hg in the soil. The experimental was designed as factorial with completely randomized design, consisting of 2 factors namely Bioremediation agent (A0: without bioremediation agent, A1: indigenous bacteria, A3: Agrobacterium sp I37) and Hg dosage (D0: without Hg, D1: Hg 0.3 µg.g-1, D2: Hg 0.51 µg.g-1). The results showed that the combination of Biduri with indigenous bacteria + 0.3 µg.g-1 Hg shows highest absorption of Hg at 57.19 µg (99.24% higher than control) and reduce soil Hg levels by 0.09 µg.g-1. Biduri is a hyperaccumulator plant because it is able to absorb more than 10 µg.g-1 of mercury.


2021 ◽  

<p>Chromium is a common heavy metal pollutant found in industrial wastewaters which may pollute agricultural soils through groundwater and watering. Phytoremediation is an economical and highly applicable method for removal of pollutants from agricultural soils. This research was carried out for the removal of hexavalent chromium (Cr (VI)) contamination from the soil with the phytoremediation method. For this purpose, only 30 mg kg-1 hexavalent chromium (Cr (VI) as Chromium CrO3, only 10 mL bacteria Rhodobacter capsulatus DSM1710 and chromium plus bacteria applied to the pots and Malabar spinach (Basella alba L.) grown in the pots. At the end of experiment the results showed that side branching, leaf width, plant dry weights were the highest agro-morphological traits when bacteria were applied to chromium polluted soil. Some macro and micro nutrient elements which are essential for plant nutrition were analyzed (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn). Among them, N, P, Fe, Cu, Mn and Zn were found to be statistically significant at the level of 5%. The Cr content of Malabar spinach in control soil was 0.31mgkg-1, but it was 2.33mgkg-1 when the soil was contaminated with Cr at the end of experiment. Moreover, when bacteria were additionally applied the Cr content increased to 4.02 mgkg-1 of Malabar spinach. Chromium pollution antagonistically affected both some nutrient element (P, K, Ca; Mg) and some heavy metals (Fe, Cu, Zn, Mn) in the soil. This study shows that phytoremediation can be used to remove the soil pollution caused by containing high hexavalent chromium. For this reason, the nitrogen fixing bacterium Rhodobacter capsulatus and the hyperaccumulator Malabar spinach plant can be used. It is the first study where Malabar spinach was used a hyperaccumulator plant for chromium pollution in the soils.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Huang-Takeshi Kohda ◽  
Zhaojie Qian ◽  
Mei-Fang Chien ◽  
Keisuke Miyauchi ◽  
Ginro Endo ◽  
...  

AbstractPteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Helena Cristina Serrano ◽  
Manuel João Pinto ◽  
Cristina Branquinho ◽  
Maria Amélia Martins-Loução

Reviewing the ecological studies on the endangered endemic Plantago almogravensis Franco, an Al-hyperaccumulator plant, and combining these with morphological, physiological, biochemical, and molecular data, significant knowledge on the limiting factors that cause its narrow geographical distribution and rarity status is achieved, which can contribute to suited conservation guidelines. Emphasis was given on (i) the major factors limiting P. almogravensis’ ecological niche (biotic and abiotic); (ii) phases of the life cycle and population dynamics; and (iii) and the phylogenetically close taxa (Plantago subulata aggregate) in order to fill the knowledge gaps in the uniqueness of P. almogravensis ecology, its phylogeny, and conservation status. The identification of relevant ecological data and using plant functional (morphological and physiological) traits, as well as genetic attributes, substantiate into a powerful tool to guide protection and conservation measures, usable toward this and other endangered hyperaccumulator plant species. Knowledge of the limitations of this strongly narrowly distributed plant allows for better design of conservation measures and to guide value and investment strategies in order to secure the species’ current area (habitat conservation and reclamation), direct the expansion of the existing population (assisting in populational densification and colonization), and/or grant ex situ conservation (genetic resources conservation).


Sign in / Sign up

Export Citation Format

Share Document