Microbes: A Sustainable Approach for Enhancing Nutrient Availability in Agricultural Soils

Author(s):  
Asha Sahu ◽  
Sudeshna Bhattacharjya ◽  
A. Mandal ◽  
J. K. Thakur ◽  
Nagwanti Atoliya ◽  
...  
2016 ◽  
pp. 367-395 ◽  
Author(s):  
Vijay Singh Meena ◽  
B. R. Maurya ◽  
Sunita Kumari Meena ◽  
Rajesh Kumar Meena ◽  
Ashok Kumar ◽  
...  

2021 ◽  
Author(s):  
Vito Abbruzzese

In many farm systems, both inorganic and organic fertilisers, including manure and slurry, are applied to the soil to replenish nutrient offtake in agricultural products and additional nutrient losses to soil as well as surface water and groundwater. With respect to sole reliance on inorganic fertilisers, the use of manure/slurry as a nutrient resource offers important benefits, including the reuse and recycling of nitrogen (N) and phosphorus (P) within farming systems as well as a reduction in the reliance on agricultural production on finite inorganic fertiliser reserves. There is increasing interest in the extent to which additives can enhance the nutrient value of slurry/manure. However, little is known about the impacts of these amended slurries/manures on the quantity and composition of N and P within agricultural and pasture soils. We report data from incubation experiments in which soils received a range of treatments, including the application of livestock slurry that had received a mixture of commercial additives. Our experiments were designed to understand how slurry that has received additives ultimately affects nutrient availability in organic, clay-loam and sandy-loam grassland soils. The addition of the additives to slurry resulted in a slight increase or no difference in total solids, pH, total N, ammonium-N, total P, total potassium, total magnesium and total sodium compared to the untreated counterpart. We considered the effects of our treatments on a range of agronomically important soil parameters, including Olsen-P, mineral-N, available-K, pH and organic matter content. This experiment aimed to understand the extent to which soil fertility could be enhanced through the application of slurries/manures that have received additives. The application of both amended and unamended slurry treatments on soil led to higher values of NH4-N, available-K, available Mg and pH than the addition of inorganic fertiliser. In addition, no substantial differences were observed between the treatment of the three soils with unamended and amended slurry.


EDIS ◽  
2009 ◽  
Vol 2009 (4) ◽  
Author(s):  
Alan L. Wright ◽  
Edward A. Hanlon ◽  
David Sui ◽  
Ronald W. Rice

SL287, a 5-page fact sheet by Alan L. Wright, Edward A. Hanlon, David Sui, and Ronald Rice, identifies strategies that could be used to address the problem of the increasing pH in muck soils. Includes additional sources of information. Published by the UF Department of Soil and Water Science, May 2009. SL287/SS500: Managing pH in the Everglades Agricultural Soils (ufl.edu)


2007 ◽  
Vol 35 (2) ◽  
pp. 689-692 ◽  
Author(s):  
Krisztina Kristóf ◽  
Györgyi Kampfl ◽  
György Heltai ◽  
Erika Nótás ◽  
Abdousalam Algaidi
Keyword(s):  

2013 ◽  
Vol 27 (3) ◽  
pp. 239-246 ◽  
Author(s):  
A.E. Ajayi ◽  
M.S. Dias Junior ◽  
N. Curi ◽  
I. Oladipo

Abstract This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.


Sign in / Sign up

Export Citation Format

Share Document