A Hybrid Machine Learning Technique for Fusing Fast k-NN and Training Set Reduction: Combining Both Improves the Effectiveness of Classification

Author(s):  
Bhagirath Parshuram Prajapati ◽  
Dhaval R. Kathiriya
Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Tomohisa Seki ◽  
Tomoyoshi Tamura ◽  
Masaru Suzuki

Introduction and Objective: Early prognostication for cardiogenic out-of-hospital cardiac arrest (OHCA) patients remain challenging. Recently, advanced machine learning techniques have been employed for clinical diagnosis and prognostication for various conditions. Therefore, in this study, we attempted to establish a prognostication model for cardiogenic OHCA using an advanced machine learning technique. Methods and Results: Data of a prospective multi-center cohort study of OHCA patients transported by an ambulance to 67 medical institutions in Kanto area of Japan between January 2012 and March 2013 was used in this study. Data for cardiogenic OHCA patients aged ≥18 years were retrieved and patients were grouped according to the time of calls for ambulances (training set: between January 1, 2012 and December 12, 2012; test set: between January 1, 2013 and March 31, 2013). From among 421 variables observed during the period between calls for ambulances and initial in-hospital treatments of cardiogenic OHCA, 38 prehospital factors or 56 prehospital factors and initial in-hospital factors were used for prognostication, respectively. Prognostication models for 1-year survival were established with random forest method, an advanced machine learning method that aggregates a series of decision trees for classification and regression. After 10-fold internal cross validation in the training set, prognostication models were validated using test set. Area under the receiver operating characteristics curve (AUC) was used to evaluate the prediction performance of models. Prognostication models trained with 38 variables or 56 variables for 1-year survival showed AUC values of 0.93±0.01 and 0.95±0.01, respectively. Conclusions: Prognostication models trained with advanced machine learning technique showed favorable prediction capability for 1-year survival of cardiogenic OHCA. These results indicate that an advanced machine learning technique can be applicable to establish early prognostication model for cardiogenic OHCA.


2021 ◽  
Author(s):  
Kota P.N. ◽  
Chandak A.S. ◽  
Patil B.P.

Abstract Industry 4.0 makes manufacturers more vulnerable to current challenges and makes it easier to adapt to market changes. This will increase the speed of innovation, make it more customer-oriented and lead to faster design processes. It is essential to focus on monitoring and controlling the production system before complex accidents occur. Moreover, an industrial control system facing information security problems in recent times because of the nature of IoT which affects the evaluation of abnormal predication. To overcome above research gaps, we shift to industrial 4.0 which combine IoT and mechanism learning for industrial monitor and manage. We propose a hybrid machine learning technique for IoT enabled industrial monitoring and control system (IoT-HML). Here, we concentrate both information security issues with accurate monitoring and control system. The first section of proposed IoT-HML system is to introduce the cat induced wheel optimization (IWO) algorithm for cluster formation. The process consists of clustering and cluster head (CH) selection. The source node forward information to destination through CH only which avoids the unwanted data loss and improve the security, because the information travel through trusted path. For route selection process, we utilize the cuckoo search algorithm to compute the optimal best path among multiples. In second section, we illustrate a coach and player learned neural network (CP-LNN) for monitoring the industrial and prevent from accidents by basic control strategies. Finally, the proposed IoT-HML system can evaluate with different set of data’s to prove the effectiveness.


Sign in / Sign up

Export Citation Format

Share Document