A Novel Construction Method of Intuitionistic Fuzzy Set from Fuzzy Set and Its Application in Multi-criteria Decision-Making Problem

Author(s):  
Akanksha Singh ◽  
Dheeraj Kumar Joshi ◽  
Sanjay Kumar
Author(s):  
Chunqiao Tan ◽  
Benjiang Ma ◽  
Desheng Dash Wu ◽  
Xiaohong Chen

Fuzziness is inherent in decision data and decision making process. In this paper, interval-valued intuitionistic fuzzy set is used to capture fuzziness in multi-criteria decision making problems. The purpose of this paper is to develop a new method for solving multi-criteria decision making problem in interval-valued intuitionistic fuzzy environments. First, we introduce and discuss the concept of interval-valued intuitionistic fuzzy point operators. Using the interval-valued intuitionistic fuzzy point operators, we can reduce the degree of uncertainty of the elements in a universe corresponding to an interval-valued intuitionistic fuzzy set. Then, we define an evaluation function for the decision-making problem to measure the degrees to which alternatives satisfy and do not satisfy the decision-maker's requirement. Furthermore, a series of new score functions are defined for multi-criteria decision making problem based on the interval-valued intuitionistic fuzzy point operators and the evaluation function and their effectiveness and advantage are illustrated by examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Harish Garg ◽  
Zeeshan Ali ◽  
Jeonghwan Gwak ◽  
Tahir Mahmood ◽  
Sultan Aljahdali

In this paper, a new decision-making algorithm has been presented in the context of a complex intuitionistic uncertain linguistic set (CIULS) environment. CIULS integrates the concept the complex of a intuitionistic fuzzy set (CIFS) and uncertain linguistic set (ULS) to deal with uncertain and imprecise information in a more proactive manner. To investigate the interrelation between the pairs of CIULSs, we combine the concept of the Heronian mean (HM) and the complex intuitionistic uncertain linguistic (CIUL) to describe some new operators, namely, CIUL arithmetic HM (CIULAHM), CIUL weighted arithmetic HM (CIULWAHM), CIUL geometric HM (CIULGHM), and CIUL weighted geometric HM (CIULWGHM). The main advantage of these suggested operators is that they considered the interaction between pairs of objects during the formulation process. Also, a number of distinct brief cases and properties of the operators are analyzed. In addition, based on these operators, we have stated a MAGDM (“multiattribute group decision-making”) problem-solving algorithm. The consistency of the algorithm is illustrated by a computational example that compares the effects of the algorithm with a number of well-known existing methods.


2021 ◽  
Vol 23 (05) ◽  
pp. 464-470
Author(s):  
Sunit Kumar ◽  
◽  
Satish Kumar ◽  

Intuitionistic fuzzy set (IFS) is one of the most extensive and important tool to accommodate more uncertainties than existing fuzzy set structures. In the present paper, we describe an improved entropy based on TODIM procedure for handling multi-criteria decision-making (MCDM) under IF setting and also the weight information is partially known. First, we study the basic notions and operating laws of IFSs, also the accuracy and score function of it. The new entropy has been proposed. Secondly, the IF information-based decision-making technique for MCDM is presented. Lastly, a numerical example is given related, to demonstrate that their results are credible and feasible.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 401 ◽  
Author(s):  
Sukhveer Singh ◽  
Harish Garg

Type-2 intuitionistic fuzzy set (T2IFS) is a powerful and important extension of the classical fuzzy set, intuitionistic fuzzy set to measure the vagueness and uncertainty. In a practical decision-making process, there always occurs an inter-relationship among the multi-input arguments. To deal with this point, the motivation of the present paper is to develop some new interval type-2 (IT2) intuitionistic fuzzy aggregation operators which can consider the multi interaction between the input argument. To achieve it, we define a symmetric triangular interval T2IFS (TIT2IFS), its operations, Hamy mean (HM) operator to aggregate the preference of the symmetric TIT2IFS and then shows its applicability through a multi-criteria decision making (MCDM). Several enviable properties and particular cases together with following different parameter values of this operator are calculated in detail. At last a numerical illustration is to given to exemplify the practicability of the proposed technique and a comparative analysis is analyzed in detail.


The fuzzy sets and Intuitionistic fuzzy sets are very useful concepts to elaborate the vagueness in real world problems. The objective of our study is to apply fuzzy set theory and Intuitionistic fuzzy set theory in decision making process. In this paper, we identify in which society a person has to purchase a house in order to fulfil his requirement to maximum extent. In our study we use intuitionistic fuzzy sets to find a relation between the societies and the parameters. And then we find a relation between a person and the parameters. We calculate Normalized Euclidean distance between two Intuitionistic fuzzy sets to make a decision of purchasing house in a society.


MATEMATIKA ◽  
2018 ◽  
Vol 34 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Shiva Raj Singh ◽  
Surendra Singh Gautam ◽  
Abhishekh .

In general most of real life problem of decision making involve imprecise parameters. In recent past the major emphasis of research workers in this area have been to develop the reliable models to deal with such imprecision and vagueness effectively. Several theories have been developed such as fuzzy set theory, interval valued fuzzy set, intuitionistic fuzzy set, and interval valued intuitionistic fuzzy set, rough set and soft set. The primary objectives of all the above developed theories are to deal with various kinds of uncertainty, imprecision and vagueness but unfortunately every theory has certain limitations. In the present paper we briefly introduced the notion of soft set, fuzzy soft set and intuitionistic fuzzy soft set. We extend the Jurio et al construction method of converting fuzzy set into intuitionistic fuzzy set to fuzzy soft set into intuitionistic fuzzy soft set. Here we consider a problem of decision making in fuzzy soft set and presented a method to generalize it into intuitionistic fuzzy soft set based decision making problem for modelling the problem in a better way. In the process we used the construction method and score function of intuitionistic fuzzy number.


Sign in / Sign up

Export Citation Format

Share Document