Investigation of Surface Damages in Hole Making on Luffa/Jute/Glass Reinforced Plastics

Author(s):  
R. Vinayagamoorthy ◽  
Ankur Sharma ◽  
Vignesh Iyer ◽  
G. Navneeth
Author(s):  
Palamandadige K. S. C. Fernando ◽  
Meng (Peter) Zhang ◽  
Zhijian Pei ◽  
Weilong Cong

Aerospace, automotive and sporting goods manufacturing industries have more interest on carbon fiber reinforced plastics due to its superior properties, such as lower density than aluminum; higher strength than high-strength metals; higher stiffness than titanium etc. Rotary ultrasonic machining is a hybrid machining process that combines the material removal mechanisms of diamond abrasive grinding and ultrasonic machining. Hole-making is the most common machining operation done on carbon fiber reinforced plastics, where delamination is a major issue. Delamination reduces structural integrity and increases assembly tolerance, which leads to rejection of a part or a component. Comparatively, rotary ultrasonic machining has been successfully applied to hole-making in carbon fiber reinforced plastics. As reported in the literature, rotary ultrasonic machining is superior to twist drilling of carbon fiber reinforced plastics in six aspects: cutting force, torque, surface roughness, delamination, tool life, and material removal rate. This paper investigates the effects of tool end angle on delamination in rotary ultrasonic machining of carbon fiber reinforced plastics. Several investigators have cited thrust force as a major cause for delamination. Eventhogh, it is found on this investigation, tool end angle has more significant influence on the delamination in rotary ultrasonic machining of carbon fiber reinforced plastics comparing to cutting force and torque.


2013 ◽  
Vol 465-466 ◽  
pp. 1075-1079 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Z. Mohid ◽  
M.R. Hamzah ◽  
A.F. Yusuf ◽  
N.A. Rahman

Hole making process is not strictly to the drilling technique where others machining could also influence to the quality in CFRP hole.Therefore, helical milling process becomes as an alternative method to produces bore on CFRP plate thus minimizing the defects. The common defects on CFRP are delamination, splintering and cracking. Meanwhile, if the CFRP stacking together with aluminum plate, burr at exit hole of aluminium plate is produced. Therefore, it is essential to control the critical machining parameters to assure a good quality of the hole. The main objective of this project is to improve the hole quality of CFRP/AL stack in terms of surface roughness using helical milling technique. In addition the cutting force and temperature will be measured as well. There are three levels of cutting speeds; two levels of feed rate and depth per helical path are made accordingly to helical milling characteristics. It was found that all tool design exhibit comparable performance for helical milling process on CFRP/Al stack.


2011 ◽  
Vol 697-698 ◽  
pp. 57-60
Author(s):  
C. Xue ◽  
Wu Yi Chen

The effects of cutting parameters and tool wear on the surface damage generated in hole making of cast GH625 nickel-based alloy were investigated. The machined surfaces were examined by employing a scanning electron microscopy (SEM). The SEM micrographs of the machined surfaces showed that surface damages induced by boring operation comprised surface cavities, smeared material and ridges parallel to feed marks. Surface cavities were associated with the carbide particles contained in workpiece material and the intrinsic defect of cast GH625 alloy. The cutting conditions had little impact on the extent of surface cavities, but they significantly affected the extent of smearing. Severe smearing of workpiece material could occur at higher cutting speed due to the relatively high cutting temperature generated and the relatively rapid tool wear.


Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei

Drilling is the most common machining practice conducted on carbon fiber reinforced plastics (CFRP), which is challenging to conventional machining processes, such as twist drilling. Rotary ultrasonic machining (RUM) is a non-traditional machining process that has been successfully used to drill CFRP, many other brittle (e.g. silicon, ceramics), and ductile (e.g. titanium alloy (Ti-6Al-4V), stainless steel) materials. RUM is superior to twist drilling on CFRP hole-making in many aspects: lower cutting force and torque, better surface finish, less potential for delamination, and better tool life. Since RUM is a hybrid process of abrasive grinding and ultrasonic machining, it is important to study the effects of abrasive properties on output variables. This paper for the first time investigates the effects of abrasive properties (abrasive size and abrasive concentration) on output variables (cutting force, torque, and surface roughness) in RUM of CFRP. It is found that cutting force increased as abrasive size increased and as abrasive concentration increased; however, abrasive properties did not have significant effects on surface roughness of the machined holes.


2015 ◽  
Vol 1 (1) ◽  
pp. 38-44
Author(s):  
G. V. VAGANOV ◽  
◽  
V. E. YUDIN ◽  
V. YU ELOKHOVSKY ◽  
L. A. MYAGKOVA ◽  
...  

INEOS OPEN ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 64-70
Author(s):  
O. N. Zabegaeva ◽  
◽  
D. A. Sapozhnikov ◽  
B. A. Bayminov ◽  
S. A. Zinov'eva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document