Performance of Tools Design when Helical Milling on Carbon Fiber Reinforced Plastics (CFRP) Aluminum (Al) Stack

2013 ◽  
Vol 465-466 ◽  
pp. 1075-1079 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Z. Mohid ◽  
M.R. Hamzah ◽  
A.F. Yusuf ◽  
N.A. Rahman

Hole making process is not strictly to the drilling technique where others machining could also influence to the quality in CFRP hole.Therefore, helical milling process becomes as an alternative method to produces bore on CFRP plate thus minimizing the defects. The common defects on CFRP are delamination, splintering and cracking. Meanwhile, if the CFRP stacking together with aluminum plate, burr at exit hole of aluminium plate is produced. Therefore, it is essential to control the critical machining parameters to assure a good quality of the hole. The main objective of this project is to improve the hole quality of CFRP/AL stack in terms of surface roughness using helical milling technique. In addition the cutting force and temperature will be measured as well. There are three levels of cutting speeds; two levels of feed rate and depth per helical path are made accordingly to helical milling characteristics. It was found that all tool design exhibit comparable performance for helical milling process on CFRP/Al stack.

Author(s):  
Adel Abidi ◽  
Sahbi Ben Salem ◽  
Mohamed Athmane Yallese

Among advanced cutting methods, High Speed Milling (HSM) is often recommended to improve the productivity and to reduce the costs of machining parts. As every cutting process, HSM is characterized by some defects like surface roughness and delamination are the main defects generated in composite materials. The aim of this experimental work is the studying of the machining quality of woven Carbon fiber reinforced plastics (CFRP) using the HSM technology. Experiments were done using different machining parameters combinations to make opened holes in CFRP laminates. This study investigated the effect of cutting speed, orbital feed speed, hole diameter on the delamination defect and surface roughness responses generated in the drilled holes. The design of experimental tests was generated using the approach of Central Composite Design (CCD). The characterization of these responses was treated with the Analysis of variance (ANOVA) and Response surface methodology (RSM). Results showed that the surface roughness is highly affected by the orbital feed speed (F) with contribution of 22.45%. The delamination factor at entry and exit of holes is strongly influenced by the hole diameter D (25.97% and 57.43%) respectively. The developed model equations gave a good correlation between the empirical and predicted results. The optimization of the milling parameters was treated using desirability function to minimize the surface roughness (Ra) and the delamination factor simultaneously.


2015 ◽  
Vol 667 ◽  
pp. 231-236 ◽  
Author(s):  
Xiao Fan Yang ◽  
You Sheng Li ◽  
Guo Hong Yan ◽  
Ju Dong Liu ◽  
Dong Min Yu

Carbon fiber-reinforced plastics (CFRP) are typical difficult-to-machine materials, which is easy to produce many defects such as burrs, dilacerations, layering in milling process. And selecting the appropriate cutting tool has become the key to machining CFRP with high quality and efficiency. In the paper, the machining principle of milling CFRP with new type end mill was analyzed. The diamond coating of general right-hand end mill, cross-flute router and fine-cross-nick router were used to cutting CFRP under the same cutting condition. Through the comparative analysis of the workpiece’s surface quality and tool wear, it concluded that: compared with right-hand diamond coated end mill, cross-flute diamond coated router or fine-cross-nick diamond coated router could effectively suppress the appearance of burrs and dilacerations; abnormal coating peeling appeared in the flank face of right-hand diamond coated end mill, forming the boundary wear, which accelerated wear failure; the flank wear of diamond coated cross-flute router and fine-cross-nick router were both abrasive wear. Due to having more cutting edge than cross-flute router in cutting process, the flank wear of fine-cross-nick router was slower, and the tool life was longer. So it was more suitable for cutting CFRP.


Author(s):  
Palamandadige K. S. C. Fernando ◽  
Meng (Peter) Zhang ◽  
Zhijian Pei ◽  
Weilong Cong

Aerospace, automotive and sporting goods manufacturing industries have more interest on carbon fiber reinforced plastics due to its superior properties, such as lower density than aluminum; higher strength than high-strength metals; higher stiffness than titanium etc. Rotary ultrasonic machining is a hybrid machining process that combines the material removal mechanisms of diamond abrasive grinding and ultrasonic machining. Hole-making is the most common machining operation done on carbon fiber reinforced plastics, where delamination is a major issue. Delamination reduces structural integrity and increases assembly tolerance, which leads to rejection of a part or a component. Comparatively, rotary ultrasonic machining has been successfully applied to hole-making in carbon fiber reinforced plastics. As reported in the literature, rotary ultrasonic machining is superior to twist drilling of carbon fiber reinforced plastics in six aspects: cutting force, torque, surface roughness, delamination, tool life, and material removal rate. This paper investigates the effects of tool end angle on delamination in rotary ultrasonic machining of carbon fiber reinforced plastics. Several investigators have cited thrust force as a major cause for delamination. Eventhogh, it is found on this investigation, tool end angle has more significant influence on the delamination in rotary ultrasonic machining of carbon fiber reinforced plastics comparing to cutting force and torque.


Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Tsukasa Ayuzawa

Microvia formation technology using lasers has become the dominant method for drilling microvia that are called blind via-holes (BVHs) in printed wiring boards (PWBs). Laser direct drilling (LDD), which is direct drilling of the outer copper foil by laser, has attracted attention as a novel method. In particular, when copper and resin with different processing thresholds are simultaneously drilled, an overhang defect occurs on the drilled hole. On the other hand, aramid fiber reinforced plastics (AFRP) have been replaced by glass fiber reinforced plastics (GFRP) as the material used for the build-up layer because of its cost performance. Moreover, the PWB quality of the particle incrustations around the drilled holes has problems in the manufacturing process. However, the LDD process of such a composite has not been clarified. Therefore, we investigated it by detailed observation using a high-speed camera. We estimated the overhang length using the finite element method (FEM) and experimentally and analytically evaluated the effects of filler contented build-up layers. As a result, we improved drilled-hole quality by using prototype PWBs made of GFRP with filler in the build-up layer.


Sign in / Sign up

Export Citation Format

Share Document