IoT-Based Smartbots for Smart City Using MCC and Big Data

Author(s):  
Praveen Kumar Singh ◽  
Rajesh Kumar Verma ◽  
P. E. S. N. Krishna Prasad
Keyword(s):  
Big Data ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 74854-74864 ◽  
Author(s):  
Jing Qiu ◽  
Yuhan Chai ◽  
Yan Liu ◽  
Zhaoquan Gu ◽  
Shudong Li ◽  
...  

Author(s):  
Reza Yogaswara

Artificial Intelligence (AI) atau kecerdasan buatan menjadi penggerak revolusi industri 4.0 yang menjanjikan banyak kemudahan bagi sektor pemerintah maupun industri. Internet of Things (IoT) dan big data contohnya dimana AI dapat diimplementasikan, teknologi yang telah banyak diadopsi di era industri 4.0 ini mampu menghubungkan setiap perangkat, seseorang dapat mengotomatisasi semua perangkat tanpa harus berada di lokasi, lebih dari itu, saat ini telah banyak mesin yang dapat menginterprestasi suatu kondisi atau kejadian tertentu dengan bantuan AI, sebagaimana telah kamera cerdas pendeteksi kepadatan volume kendaraan di jalan raya menggunakan teknologi Deep Learning Neural Network, yang telah diimplementasikan pada beberapa Pemerintah Daerah Kabupaten dan Kota dalam mendukung program Smart City yang telah dicanangkan. Pada sektor industri, banyak juga dari mereka yang telah mengotomatisasi mesin produksi dan manufaktur menggunakan robot dan Artificial Intelligence, sehingga Industri 4.0 akan meningkatkan daya saing melalui perangkat cerdas, setiap entitas yang mampu menguasai teknologi ini disitulah keunggulan kompetitifnya (competitive advantage). Namun ditengah perkembangan industri 4.0 yang cukup masif pemerintah harus bergerak cepat dalam mengadopsi platform ini, jika tidak, mereka akan menurunkan efisiensi proses bisnis untuk menjaga stabilitas layanan publik. Oleh sebab itu diperlukan keilmuan dan pemahaman yang benar bagi pemerintah dalam menghadapai era Industri 4.0, dimana Chief Information Officer (CIO) dapat mengambil peranan penting dalam memberikan dukungan yang didasari atas keilmuan mereka terkait tren teknologi industri 4.0, khususnya AI yang telah banyak diadopsi di berbagai sektor.


Sign in / Sign up

Export Citation Format

Share Document