Fraud Detection in Online Transactions Using Supervised Learning Techniques

Author(s):  
Akshi Kumar ◽  
Garima Gupta
Author(s):  
Amit Majumder ◽  
Ira Nath

Data mining technique helps us to extract useful data from a large dataset of any raw data. It is used to analyse and identify data patterns and to find anomalies and correlations within dataset to predict outcomes. Using a broad range of techniques, we can use this information to improve customer relationships and reduce risks. Data mining and supervised learning have applications in multiple fields of science and research. Machine learning looks at patterns of data and helps to predict future behaviour by learning from the patterns. Data mining is normally used as a source of information on which machine learning can be applied to solve some of problems in our daily life. Supervised learning is one type of machine learning method which uses labelled data consisting of input along with the label of inputs and generates one learned model (or classifier for classification type work) which can be used to label unknown data. Financial accounting fraud detection has become an emerging topic in the field of academic, research and industries.


2016 ◽  
Vol 15 (1) ◽  
pp. 63-80
Author(s):  
Jitrlada ROJRATANAVIJIT ◽  
Preecha VICHITTHAMAROS ◽  
Sukanya PHONGSUPHAP

The emergence of Twitter in Thailand has given millions of users a platform to express and share their opinions about products and services, among other subjects, and so Twitter is considered to be a rich source of information for companies to understand their customers by extracting and analyzing sentiment from Tweets. This offers companies a fast and effective way to monitor public opinions on their brands, products, services, etc. However, sentiment analysis performed on Thai Tweets has challenges brought about by language-related issues, such as the difference in writing systems between Thai and English, short-length messages, slang words, and word usage variation. This research paper focuses on Tweet classification and on solving data sparsity issues. We propose a mixed method of supervised learning techniques and lexicon-based techniques to filter Thai opinions and to then classify them into positive, negative, or neutral sentiments. The proposed method includes a number of pre-processing steps before the text is fed to the classifier. Experimental results showed that the proposed method overcame previous limitations from other studies and was very effective in most cases. The average accuracy was 84.80 %, with 82.42 % precision, 83.88 % recall, and 82.97 % F-measure.


2016 ◽  
Author(s):  
Philippe Desjardins-Proulx ◽  
Idaline Laigle ◽  
Timothée Poisot ◽  
Dominique Gravel

0AbstractSpecies interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with other machine learning techniques. Recommenders are algorithms developed for companies like Netflix to predict if a customer would like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. We also explore how the K nearest neighbour approach can be used with both positive and negative information, in which case the goal of the algorithm is to fill missing entries from a matrix (imputation). By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized to ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.


IET Networks ◽  
2021 ◽  
Author(s):  
Lubna Mohammed ◽  
Alagan Anpalagan ◽  
Ahmed S. Khwaja ◽  
Muhammad Jaseemuddin

2021 ◽  
Vol 13 (17) ◽  
pp. 9597
Author(s):  
Oyeniyi Akeem Alimi ◽  
Khmaies Ouahada ◽  
Adnan M. Abu-Mahfouz ◽  
Suvendi Rimer ◽  
Kuburat Oyeranti Adefemi Alimi

Supervisory Control and Data Acquisition (SCADA) systems play a significant role in providing remote access, monitoring and control of critical infrastructures (CIs) which includes electrical power systems, water distribution systems, nuclear power plants, etc. The growing interconnectivity, standardization of communication protocols and remote accessibility of modern SCADA systems have contributed massively to the exposure of SCADA systems and CIs to various forms of security challenges. Any form of intrusive action on the SCADA modules and communication networks can create devastating consequences on nations due to their strategic importance to CIs’ operations. Therefore, the prompt and efficient detection and classification of SCADA systems intrusions hold great importance for national CIs operational stability. Due to their well-recognized and documented efficiencies, several literature works have proposed numerous supervised learning techniques for SCADA intrusion detection and classification (IDC). This paper presents a critical review of recent studies whereby supervised learning techniques were modelled for SCADA intrusion solutions. The paper aims to contribute to the state-of-the-art, recognize critical open issues and offer ideas for future studies. The intention is to provide a research-based resource for researchers working on industrial control systems security. The analysis and comparison of different supervised learning techniques for SCADA IDC systems were critically reviewed, in terms of the methodologies, datasets and testbeds used, feature engineering and optimization mechanisms and classification procedures. Finally, we briefly summarized some suggestions and recommendations for future research works.


Author(s):  
Alexandros Arjmand ◽  
Alexandros T. Tzallas ◽  
Markos G. Tsipouras ◽  
Roberta Forlano ◽  
Pinelopi Manousou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document