Research on Torsional Vibration Suppression of Electric Vehicle Driveline

Author(s):  
Zhanyong Cao ◽  
Feng He ◽  
Huilin Li ◽  
Zhu Xu
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3474
Author(s):  
Kosuke Takahashi ◽  
Nyam Jargalsaikhan ◽  
Shriram Rangarajan ◽  
Ashraf Mohamed Hemeida ◽  
Hiroshi Takahashi ◽  
...  

Due to changes in wind, the torque obtained from the wind turbine always fluctuates. Here, the wind turbine and the rotor of the generator are connected by a shaft that is one elastic body, and each rotating body has different inertia. The difference in inertia between the wind turbine and the generator causes a torsion between the wind generator and the generator; metal fatigue and torsion can damage the shaft. Therefore, it is necessary to consider the axial torsional vibration suppression of a geared wind power generator using a permanent magnet synchronous generator (PMSG). In addition, errors in axis system parameters occur due to long-term operation of the generator, and it is important to estimate for accurate control. In this paper, we propose torque estimation using H ∞ observer and axial torsional vibration suppression control in a three inertia system. The H ∞ controller is introduced into the armature current control system (q-axis current control system) of the wind power generator. Even if parameter errors and high-frequency disturbances are included, the shaft torsional torque is estimated by the H ∞ observer that can perform robust estimation. Moreover, by eliminating the resonance point of the shaft system, vibration suppression of the shaft torsional torque is achieved. The results by the proposed method can suppress axial torsional vibration and show the effect better than the results using Proportional-Integral (PI) control.


Author(s):  
Yukio Ishida ◽  
Tsuyoshi Inoue ◽  
Taishi Kagawa ◽  
Motohiko Ueda

Driving torque of rotating machinery, such as automobile engines, changes periodically. As a result, torsional vibrations occur and cause serious noise and vibration problems. In this study, the dynamic characteristics of centrifugal pendulum vibration absorbers restraining torsional vibration is investigated both theoretically and experimentally. In the theoretical analysis, the nonlinear characteristics are taken into consideration under the assumption of large amplitude vibration of pendulum. It is clarified that the centrifugal pendulum, although it has remarkable effects on suppressing harmonic vibration, induces large amplitude harmonic vibrations, the second and third superharmonic resonances, and unstable vibrations of harmonic type. We propose various methods to suppress these secondarily induced vibration and show that it is possible to suppress torsional vibrations to substancially zero amplitude in all through the rotational speed range.


2008 ◽  
Vol 2008 (0) ◽  
pp. _139-1_-_139-6_
Author(s):  
Shingo NISHIDA ◽  
Hiroshi MATSUHISA ◽  
Hideo UTSUNO ◽  
Keisuke YAMADA ◽  
Katsutoshi SAWADA

Author(s):  
Ying Huang ◽  
Yongguang Yang ◽  
Fujun Zhang ◽  
Zhenfeng Zhao

The torsional vibration of a crankshaft greatly affects engine performance, and the control and suppression of such vibration have thus always been a focus of engine research. The introduction of an electronic fuel-injection system for the diesel engine has made it possible to control individual cylinders, thus providing a new way to actively control the torsional vibration of a diesel engine. A V8 diesel engine model for co-simulation between crankshaft dynamics and engine performance was established with GT-SUIT software, and the model was verified by experiment data. The active control of crankshaft torsional vibration of a diesel engine by adjusting the fuel injection vector was simulated. First, the amplitude–frequency and phase–frequency characteristics of the excitation torque under different fuel-injection-vector conditions were analyzed. On the basis of the frequency characteristics, different active vibration-suppression schemes were studied, and the crankshaft vibration suppression effects were compared. The simulation results show that adjusting the fuel injection vector is an effective approach for controlling the torsional vibration of an engine crankshaft.


Sign in / Sign up

Export Citation Format

Share Document